Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Generalisation of Hooke's law for finite strain to include the elastic range of strain-hardening materials

Author: E. W. Billington
Journal: Quart. Appl. Math. 62 (2004), 781-795
MSC: Primary 74B20; Secondary 74A20, 74C15
DOI: https://doi.org/10.1090/qam/2104274
MathSciNet review: MR2104274
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The representation theorem for isotropic tensor-valued functions of symmetric second-order tensors is considered in the context of two parameters based on the Lode and Fromm parameters. A geometrical representation is established using the concept of a characteristic representation intensity function. It is shown that this geometrical representation identifies the only admissible form of the representation intensity function to be piecewise linear and continuous. This conclusion imposes a restriction on how the representation theorem can be used to formulate constitutive equations. The representation theorem is used to formulate a generalisation of Hooke's law for finite strain that is applicable to the initial elastic range of strain-hardening materials, including the elastic conditions at initial yield.

References [Enhancements On Off] (What's this?)

  • [1] E. W. Billington, Constitutive equation for a class of isotropic perfectly elastic solids using a new measure of finite strain and the corresponding stress, J. Eng. Math. 45. 117-134 (2003) MR 1958070
  • [2] P. G. Ciarlet, Mathematical Elasticity, Volume I, Three dimensional elasticity. North Holland: Amsterdam 1988, pp. 115-118, 130-132 MR 936420
  • [3] H. Fromm, Stoffgesetze des isotropen Kontinuums, insbesondere bei Zähplastischem Vehalton, Ing-Arch 4. 432-466 (1933)
  • [4] A. M. Goodbody, Cartesian tensors, Ellis Horwood: Chichester, 1982 pp. 106-108
  • [5] W. Lode, Versuche uber den einfiuss der mittleren hauptspannung auf das fliessen der metalle eisen, kupfer und nickel, Z. Phys. 36. 913-939 (1926)
  • [6] R. von Mises, Mechanik, der festen Kärper in plastich deformablen Zustand, Gättinger Nachrichten. Math.-Phys Klasse 582-592 (1913)
  • [7] R. von Mises, Mechanik der plastischen Formänderung von Kristallen, ZAMM 8. 161-185 (1928)
  • [8] J. H. Poynting, On pressure perpendicular to the shear-planes in finite pure shear and on the lengthening of loaded wires when twisted, Proc. Roy. Soc.(London) A82. 546-559 (1909)
  • [9] J. H. Poynting, On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortional waves in steel, Proc. Roy. Soc.(London) A86. 534-561 (1912)
  • [10] W. Prager, Strain hardening under combined stresses, J. App. Phys. 16. 837-840 (1945). MR 0016016

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74B20, 74A20, 74C15

Retrieve articles in all journals with MSC: 74B20, 74A20, 74C15

Additional Information

DOI: https://doi.org/10.1090/qam/2104274
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society