Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A global stability criterion for a family of delayed population models


Authors: Eduardo Liz, Manuel Pinto, Victor Tkachenko and Sergei Trofimchuk
Journal: Quart. Appl. Math. 63 (2005), 56-70
MSC (2000): Primary 34K20; Secondary 92D25
DOI: https://doi.org/10.1090/S0033-569X-05-00951-3
Published electronically: January 19, 2005
MathSciNet review: 2126569
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a family of single-species delayed population models, a new global stability condition is found. This condition is sharp and can be applied in both monotone and nonmonotone cases. Moreover, the consideration of variable or distributed delays is allowed. We illustrate our approach on the Mackey-Glass equations and the Lasota-Wazewska model.


References [Enhancements On Off] (What's this?)

  • 1. K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol. 39 (1999), 332-352.MR 1727839 (2001b:92040)
  • 2. K. Gopalsamy, ``Stability and oscillations in delay differential equations of population dynamics," Mathematics and its Applications, 74, Kluwer, Dordrecht, 1992. MR 1163190 (93c:34150)
  • 3. K. Gopalsamy, S.I. Trofimchuk and N.R. Bantsur, A note on global attractivity in modems of hematopoiesis, Ukrain. Math. J. 50 (1998), 5-12. MR 1669243 (2000e:92009)
  • 4. K. Gopalsamy and P.-X. Weng, Global attractivity and level crossings in a model of haematopoiesis, Bull. Inst. Math. Acad. Sinica 22 (1994), 341-360.MR 1311545 (96a:92004)
  • 5. I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford Univ. Press, London, 1991.MR 1168471 (93m:34109)
  • 6. I. Gyori and S. Trofimchuk, Global attractivity in $x'(t)=-\delta x(t)+pf(x(t-\tau))$. Dynam. Systems Appl. 8, (1999), 197-210.MR 1695779 (2000d:34160)
  • 7. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New-York, 1993. MR 1243878 (94m:34169)
  • 8. A. Ivanov, E. Liz and S. Trofimchuk, Halanay inequality, Yorke $3/2$ stability criterion, and differential equations with maxima, Tohoku Math. J. 54 (2002), 277-295. MR 1904953 (2003j:34139)
  • 9. Y. Kuang, ``Delay differential equations with applications in population dynamics," Academic Press, 1993. MR 1218880 (94f:34001)
  • 10. M.R.S. Kulenovic, G. Ladas and Y.G. Sficas, Global attractivity in population dynamics, Comput. Math. Appl. 18 (1989), 925-928. MR 1021318 (91c:92024)
  • 11. J.W. Li and S.S. Cheng, Global attractivity in an RBC survival model of Wazewska and Lasota, Quart. Appl. Math. 60 (2002), 477-483. MR 1914437 (2003f:92037)
  • 12. E. Liz, C. Martínez and S. Trofimchuk, Attractivity properties of infinite delay Mackey-Glass type equations, Differential and Integral Equations, 15 (2002), 875-896.MR 1895571 (2003f:34141)
  • 13. E. Liz, V. Tkachenko and S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 35 (2003), 596-622.MR 2048402 (2004m:34175)
  • 14. E. Liz, M. Pinto, G. Robledo, V. Tkachenko and S. Trofimchuk, Wright type delay differential equations with negative Schwarzian, Discrete Contin. Dynam. Systems, 9 (2003), 309-321.MR 1952376 (2004a:34135)
  • 15. M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977), 287-289.
  • 16. X. H. Tang and X. Zou, Stability of scalar delay differential equations with dominant delayed terms, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 951-968. MR 2006211 (2004h:34148)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 34K20, 92D25

Retrieve articles in all journals with MSC (2000): 34K20, 92D25


Additional Information

Eduardo Liz
Affiliation: Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Universidad de Vigo, Campus Marcosende, 36280 Vigo, Spain
Email: eliz@dma.uvigo.es

Manuel Pinto
Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
Email: pintoj@abello.dic.uchile.cl

Victor Tkachenko
Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivs’ka str. 3, Kiev, Ukraine
Email: vitk@imath.kiev.ua

Sergei Trofimchuk
Affiliation: Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
Email: trofimch@inst-mat.utalca.cl

DOI: https://doi.org/10.1090/S0033-569X-05-00951-3
Keywords: Global stability, delay differential equations, Schwarz derivative, Mackey-Glass equations, Lasota--Wazewska model
Received by editor(s): January 15, 2004
Published electronically: January 19, 2005
Article copyright: © Copyright 2005 Brown University

American Mathematical Society