Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation


Author: Patrizio Neff
Journal: Quart. Appl. Math. 63 (2005), 88-116
MSC (2000): Primary 74A35, 74C05, 74C10, 74C20, 74D10, 74E05, 74E10, 74E15, 74G30, 74G65, 74N15
DOI: https://doi.org/10.1090/S0033-569X-05-00953-9
Published electronically: January 20, 2005
MathSciNet review: 2126571
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with a phenomenological model of initially isotropic finite-strain multiplicative elasto-plasticity for polycrystals with grain boundary relaxation (Neff, Cont. Mech. Thermo., 2003). We prove a local in time existence and uniqueness result of the corresponding initial boundary value problem in the quasistatic rate-dependent case. Use is made of a generalized Korn first inequality (Neff, Proc. Roy. Soc. Edinb. A, 2002) taking into account the incompatibility of the plastic deformation $F_p$. This is a first result concerning classical solutions in geometrically exact nonlinear finite visco-plasticity for polycrystals. Global existence is not proved and cannot be expected due to the natural possibility of material degradation in time.


References [Enhancements On Off] (What's this?)

  • 1. Hans-Dieter Alber, Materials with memory, Lecture Notes in Mathematics, vol. 1682, Springer-Verlag, Berlin, 1998. Initial-boundary value problems for constitutive equations with internal variables. MR 1619546
  • 2. Karl-Heinz Anthony, Die Theorie der nichtmetrischen Spannungen in Kristallen, Arch. Rational Mech. Anal. 40 (1970/1971), 50–78 (German, with English summary). MR 0267823, https://doi.org/10.1007/BF00281530
  • 3. A. Bertram, An alternative approach to finite plasticity based on material isomorphisms, Int. J. Plasticity 52 (1998), 353-374.
  • 4. A. Bertram and B. Svendsen, On material objectivity and reduced constitutive equations, Arch. Mech. (Arch. Mech. Stos.) 53 (2001), no. 6, 653–675. MR 1885766
  • 5. J. F. Besseling and E. van der Giessen, Mathematical modelling of inelastic deformation, Applied Mathematics and Mathematical Computation, vol. 5, Chapman & Hall, London, 1994. MR 1284037
  • 6. Kaushik Bhattacharya and Robert V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials, Arch. Rational Mech. Anal. 139 (1997), no. 2, 99–180. MR 1478776, https://doi.org/10.1007/s002050050049
  • 7. F. Bloom, Modern Differential Geometric Techniques in the Theory of Continuous Distributions of Dislocations, Lecture Notes in Mathematics, vol. 733, Springer, Berlin, 1979. MR 0546839 (80k:73001)
  • 8. S.R. Bodner and Y. Partom, Constitutive equations for elastic-viscoplastic strainhardening materials, J. Appl. Mech. 42 (1975), 385-389.
  • 9. O.T. Bruhns, H. Xiao, and A. Mayers, Some basic issues in traditional eulerian formulations of finite elastoplasticity, Int. J. Plast. 19 (2003), 2007-2026.
  • 10. C. Carstensen and K. Hackl, On microstructure occurring in a model of finite-strain elastoplasticity involving a single slip system, ZAMM (2000).
  • 11. Carsten Carstensen, Klaus Hackl, and Alexander Mielke, Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), no. 2018, 299–317. MR 1889770, https://doi.org/10.1098/rspa.2001.0864
  • 12. J. Casey and P.M. Naghdi, A remark on the use of the decomposition $F=F_e\cdot F_p$ in plasticity, J. Appl. Mech. 47 (1980), 672-675.
  • 13. P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids 49 (2001), 1539-1568.
  • 14. Krzysztof Chełmiński, On self-controlling models in the theory of nonelastic material behavior of metals, Contin. Mech. Thermodyn. 10 (1998), no. 3, 121–133. MR 1634932, https://doi.org/10.1007/s001610050085
  • 15. Krzysztof Chełmiński, On monotone plastic constitutive equations with polynomial growth condition, Math. Methods Appl. Sci. 22 (1999), no. 7, 547–562. MR 1682911, https://doi.org/10.1002/(SICI)1099-1476(19990510)22:7<547::AID-MMA52>3.0.CO;2-T
  • 16. P.G. Ciarlet, Three-Dimensional Elasticity, first ed., Studies in Mathematics and its Applications, vol. 1, Elsevier, Amsterdam, 1988. MR 0936420 (89e:73001)
  • 17. Y.F. Dafalias, The plastic spin concept and a simple illustration of its role in finite plastic transformations, Mechanics of Materials 3 (1984), 223-233.
  • 18. -, Issues on the constitutive formulation at large elastoplastic deformations, Part I: Kinematics, Acta Mechanica 69 (1987), 119-138.
  • 19. -, Plastic spin: necessity or redundancy?, Int. J. Plasticity 14 (1998), no. 9, 909-931.
  • 20. S. Ebenfeld, Aspekte der Kontinua mit Mikrostruktur, Berichte aus der Mathematik, Shaker Verlag, Aachen, 1998.
  • 21. -, $L^2$-regularity theory of linear strongly elliptic Dirichlet systems of order $2m$ with minimal regularity in the coefficients, Preprint Nr. 2015, TU Darmstadt, (1998).
  • 22. Stefan Ebenfeld, 𝐿²-regularity theory of linear strongly elliptic Dirichlet systems of order 2𝑚 with minimal regularity in the coefficients, Quart. Appl. Math. 60 (2002), no. 3, 547–576. MR 1914441, https://doi.org/10.1090/qam/1914441
  • 23. P. Ellsiepen and S. Hartmann, Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations, Int. J. Num. Meth. Engrg. 51 (2001), 679-707.
  • 24. A. E. Green and P. M. Naghdi, A general theory of an elastic-plastic continuum, Arch. Rational Mech. Anal. 18 (1965), 251–281; corrigenda, ibid. 19 (1965), 408. MR 0223129
  • 25. Morton E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients, J. Mech. Phys. Solids 48 (2000), no. 5, 989–1036. MR 1746552, https://doi.org/10.1016/S0022-5096(99)00059-9
  • 26. Klaus Hackl, Generalized standard media and variational principles in classical and finite strain elastoplasticity, J. Mech. Phys. Solids 45 (1997), no. 5, 667–688. MR 1447372, https://doi.org/10.1016/S0022-5096(96)00110-X
  • 27. Weimin Han and B. Daya Reddy, Plasticity, Interdisciplinary Applied Mathematics, vol. 9, Springer-Verlag, New York, 1999. Mathematical theory and numerical analysis. MR 1681061
  • 28. P. Haupt, On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behaviour, Int. J. Plasticity 1 (1985), 303-316.
  • 29. Peter Haupt, Continuum mechanics and theory of materials, Advanced Texts in Physics, Springer-Verlag, Berlin, 2000. Translated from the German by Joan A. Kurth. MR 1762655
  • 30. Ioan R. Ionescu and Mircea Sofonea, Functional and numerical methods in viscoplasticity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. MR 1244578
  • 31. L.M. Kachanov, Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986.
  • 32. Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry. Vol. I, Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955. Kazuo Kondo, Chairman. MR 0080956
  • 33. Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry. Vol. I, Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955. Kazuo Kondo, Chairman. MR 0080956
  • 34. A. Krawietz, Materialtheorie, Springer, Berlin, 1986. MR 0959732 (90e:73001)
  • 35. Ekkehart Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der angewandten Mathematik. Bd. 5, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 (German). MR 0095615
  • 36. -, Dislocation: a new concept in the continuum theory of plasticity, J. Math. Phys. 42 (1962), 27-37.
  • 37. Ekkehart Kröner and Alfred Seeger, Nicht-lineare Elastizitätstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal. 3 (1959), 97–119 (German). MR 0106587, https://doi.org/10.1007/BF00284168
  • 38. E.H. Lee, Elastic-plastic deformation at finite strain, J. Appl. Mech. 36 (1969), 1-6.
  • 39. J. Lemaitre and J.L. Chaboche, Mécanique des matériaux solides, Dunod, Paris, 1985.
  • 40. M. Lucchesi and P. Podio-Guidugli, Materials with elastic range: a theory with a view toward applications. Part I, Arch. Rat. Mech. Anal. 102 (1988), 23-43. MR 0938382 (90f:73008)
  • 41. J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, Int. J. Solids Structures 9 (1973), 725-740.
  • 42. Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical foundations of elasticity, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1983 original. MR 1262126
  • 43. Gérard A. Maugin, Material inhomogeneities in elasticity, Applied Mathematics and Mathematical Computation, vol. 3, Chapman & Hall, London, 1993. MR 1250832
  • 44. -, The Thermomechanics of Nonlinear Irreversible Behaviors, Nonlinear Science, no. 27, World Scientific, Singapore, 1999.
  • 45. G.A. Maugin and M. Epstein, Geometrical material structure of elastoplasticity, Int. J. Plasticity 14 (1998), 109-115.
  • 46. A. Mayers, P. Schiebe, and O.T. Bruhns, Some comments on objective rates of symmetric eulerian tensors with application to eulerian strain rates, Acta Mech. 139 (2000), 91-103.
  • 47. C. Miehe, A theory of large-strain isotropic thermoplasticity based on metric transformation tensors, Archive Appl. Mech. 66 (1995), 45-64.
  • 48. A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL(d), Sonderforschungsbereich 404 Bericht 2000/26, University of Stuttgart, 2000.
  • 49. A. I. Murdoch, Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations, Contin. Mech. Thermodyn. 15 (2003), no. 3, 309–320. MR 1986708, https://doi.org/10.1007/s00161-003-0121-9
  • 50. W. Muschik and L. Restuccia, Changing the observer and moving materials in continuum physics: objectivity and frame-indifference, Technische Mechanik 22 (2002), 152-160.
  • 51. P. M. Naghdi, A critical review of the state of finite plasticity, Z. Angew. Math. Phys. 41 (1990), no. 3, 315–394. MR 1058818, https://doi.org/10.1007/BF00959986
  • 52. A. Needleman, Material rate dependence and mesh sensitivity in localization problems, Comp. Meth. Appl. Mech. Engrg. 67 (1988), 69-85.
  • 53. P. Neff, Formulation of visco-plastic approximations in finite plasticity for a model of small elastic strains, Part I: Modelling, Preprint 2127, TU Darmstadt, 2000.
  • 54. -, Mathematische Analyse multiplikativer Viskoplastizität, Ph.D. Thesis, TU Darmstadt, Shaker Verlag, ISBN:3-8265-7560-1, Aachen, 2000.
  • 55. -, Formulation of visco-plastic approximations in finite plasticity for a model of small elastic strains, Part IIa: Local existence and uniqueness results, Preprint 2138, TU Darmstadt, 2001.
  • 56. Patrizio Neff, On Korn’s first inequality with non-constant coefficients, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 1, 221–243. MR 1884478, https://doi.org/10.1017/S0308210500001591
  • 57. Patrizio Neff, Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation, Contin. Mech. Thermodyn. 15 (2003), no. 2, 161–195. MR 1970291, https://doi.org/10.1007/s00161-002-0109-x
  • 58. Patrizio Neff and Christian Wieners, Comparison of models for finite plasticity: a numerical study, Comput. Vis. Sci. 6 (2003), no. 1, 23–35. MR 1985199, https://doi.org/10.1007/s00791-003-0104-1
  • 59. M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, manuscript, 1993.
  • 60. M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids 47 (1999), no. 2, 397–462. MR 1674064, https://doi.org/10.1016/S0022-5096(97)00096-3
  • 61. M. Ortiz, E. A. Repetto, and L. Stainier, A theory of subgrain dislocation structures, J. Mech. Phys. Solids 48 (2000), no. 10, 2077–2114. MR 1778727, https://doi.org/10.1016/S0022-5096(99)00104-0
  • 62. M. Ortiz and L. Stainier, The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Engrg. 171 (1999), no. 3-4, 419–444. MR 1685716, https://doi.org/10.1016/S0045-7825(98)00219-9
  • 63. Waldemar Pompe, Korn’s first inequality with variable coefficients and its generalization, Comment. Math. Univ. Carolin. 44 (2003), no. 1, 57–70. MR 2045845
  • 64. A. Raoult, Non-polyconvexity of the stored energy function of a St.Venant-Kirchhoff material, Aplikace Matematiky 6 (1986), 417-419.MR 0870478 (88f:73028)
  • 65. M.B. Rubin, Plasticity theory formulated in terms of physically based microstructrural variables- Part I. Theory, Int. J. Solids Structures 31 (1994), no. 19, 2615-2634.
  • 66. C. Sansour and F.G. Kollmann, On theory and numerics of large viscoplastic deformation, Comp. Meth. Appl. Mech. Engrg. 146 (1996), 351-369.
  • 67. Miroslav Šilhavý, On transformation laws for plastic deformations of materials with elastic range, Arch. Rational Mech. Anal. 63 (1976), no. 2, 169–182. MR 0669403, https://doi.org/10.1007/BF00280603
  • 68. J. C. Simo, Numerical analysis and simulation of plasticity, Handbook of numerical analysis, Vol. VI, Handb. Numer. Anal., VI, North-Holland, Amsterdam, 1998, pp. 183–499. MR 1665428
  • 69. J. C. Simo and T. J. R. Hughes, Computational inelasticity, Interdisciplinary Applied Mathematics, vol. 7, Springer-Verlag, New York, 1998. MR 1642789
  • 70. J.C. Simo and M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comp. Meth. Appl. Mech. Engrg. 49 (1985), 221-245.
  • 71. P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations, Int. J. Engrg. Sci. 34 (1996), 1717-1735.
  • 72. B. Svendsen and A. Bertram, On frame-indifference and form-invariance in constitutive theory, Acta Mech. 132 (1999), no. 1-4, 195–207. MR 1659588, https://doi.org/10.1007/BF01186967
  • 73. T. Valent, Boundary Value Problems of Finite Elasticity, Springer, Berlin, 1988. MR 0917733 (89c:73001)
  • 74. C. Wieners, M. Amman, S. Diebels, and W. Ehlers, Parallel 3-d simulations for porous media models in soil mechanics, Comp. Mech. 29 (2002), 75-87.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 74A35, 74C05, 74C10, 74C20, 74D10, 74E05, 74E10, 74E15, 74G30, 74G65, 74N15

Retrieve articles in all journals with MSC (2000): 74A35, 74C05, 74C10, 74C20, 74D10, 74E05, 74E10, 74E15, 74G30, 74G65, 74N15


Additional Information

Patrizio Neff
Affiliation: AG6, Fachbereich Mathematik, Darmstadt University of Technology, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
Address at time of publication: Department of Mathematics, University of Technology, Darmstadt
Email: neff@mathematik.tu-darmstadt.de

DOI: https://doi.org/10.1090/S0033-569X-05-00953-9
Keywords: Plasticity, visco-plasticity, solid mechanics, elliptic systems, variational methods.
Received by editor(s): May 13, 2004
Published electronically: January 20, 2005
Article copyright: © Copyright 2005 Brown University

American Mathematical Society