Delta-shock wave type solution of hyperbolic systems of conservation laws

Authors:
V. G. Danilov and V. M. Shelkovich

Journal:
Quart. Appl. Math. **63** (2005), 401-427

MSC (2000):
Primary 35L65; Secondary 35L67, 76L05

DOI:
https://doi.org/10.1090/S0033-569X-05-00961-8

Published electronically:
August 17, 2005

MathSciNet review:
2169026

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For two classes of hyperbolic systems of conservation laws *new definitions of a **-shock wave type solution* are introduced. These two definitions give natural generalizations of the classical definition of the weak solutions. It is *relevant* to the notion of -shocks. The *weak asymptotics method* developed by the authors is used to describe the propagation of -shock waves to the three types of systems of conservation laws and derive the corresponding Rankine-Hugoniot conditions for -shocks.

**1.**F. Bouchut,*On zero pressure gas dynamics*, Advances in kinetic theory and computing, Ser. Adv. Math. Appl. Sci., vol. 22, World Sci. Publ., River Edge, NJ, 1994, pp. 171–190. MR**1323183****2.**V. G. Danilov, V. P. Maslov, and V. M. Shelkovich,*Algebras of the singularities of singular solutions of first-order quasilinear strictly hyperbolic systems*, Teoret. Mat. Fiz.**114**(1998), no. 1, 3–55 (Russian, with Russian summary); English transl., Theoret. and Math. Phys.**114**(1998), no. 1, 1–42. MR**1756560**, https://doi.org/10.1007/BF02557106**3.**V. G. Danilov, G. A. Omel′yanov, and V. M. Shelkovich,*Weak asymptotics method and interaction of nonlinear waves*, Asymptotic methods for wave and quantum problems, Amer. Math. Soc. Transl. Ser. 2, vol. 208, Amer. Math. Soc., Providence, RI, 2003, pp. 33–163. MR**1995392**, https://doi.org/10.1090/trans2/208/02**4.**V. G. Danilov and V. M. Shelkovich,*Propagation and interaction of nonlinear waves to quasilinear equations*, Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000) Internat. Ser. Numer. Math., 140, vol. 141, Birkhäuser, Basel, 2001, pp. 267–276. MR**1882927****5.**V. G. Danilov and V. M. Shelkovich,*Propagation and interaction of shock waves of quasilinear equation*, Nonlinear Stud.**8**(2001), no. 1, 135–169. MR**1856223****6.**V. G. Danilov and V. M. Shelkovich,*Propagation and interaction of delta-shock waves of a hyperbolic system of conservation laws*, Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2003, pp. 483–492. MR**2053197****7.**V. G. Danilov, V. M. Shelkovich,*Dynamics of propagation and interaction of -shock waves in hyperbolic systems.*pp.40, Preprint 2003-068 at the url: http://www.math.ntnu.no/conservation/2003/068.html (to appear in the Journal of Differential Equations)**8.**V. G. Danilov and V. M. Shelkovich,*Propagation and interaction of 𝛿-shock waves of hyperbolic systems of conservation laws*, Dokl. Akad. Nauk**394**(2004), no. 1, 10–14 (Russian). MR**2088475****9.**Weinan E, Yu. G. Rykov, and Ya. G. Sinai,*Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics*, Comm. Math. Phys.**177**(1996), no. 2, 349–380. MR**1384139****10.**Grey Ercole,*Delta-shock waves as self-similar viscosity limits*, Quart. Appl. Math.**58**(2000), no. 1, 177–199. MR**1739044**, https://doi.org/10.1090/qam/1739044**11.**Jiaxin Hu,*The Riemann problem for pressureless fluid dynamics with distribution solutions in Colombeau’s sense*, Comm. Math. Phys.**194**(1998), no. 1, 191–205. MR**1628318**, https://doi.org/10.1007/s002200050355**12.**Feimin Huang,*Existence and uniqueness of discontinuous solutions for a class of nonstrictly hyperbolic systems*, Advances in nonlinear partial differential equations and related areas (Beijing, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 187–208. MR**1690829****13.**K. T. Joseph,*A Riemann problem whose viscosity solutions contain 𝛿-measures*, Asymptotic Anal.**7**(1993), no. 2, 105–120. MR**1225441****14.**Barbara Lee Keyfitz and Herbert C. Kranzer,*Spaces of weighted measures for conservation laws with singular shock solutions*, J. Differential Equations**118**(1995), no. 2, 420–451. MR**1330835**, https://doi.org/10.1006/jdeq.1995.1080**15.**Philippe LeFloch,*An existence and uniqueness result for two nonstrictly hyperbolic systems*, Nonlinear evolution equations that change type, IMA Vol. Math. Appl., vol. 27, Springer, New York, 1990, pp. 126–138. MR**1074190**, https://doi.org/10.1007/978-1-4613-9049-7_10**16.**Jiequan Li and Tong Zhang,*On the initial-value problem for zero-pressure gas dynamics*, Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998) Internat. Ser. Numer. Math., vol. 130, Birkhäuser, Basel, 1999, pp. 629–640. MR**1717235****17.**Tai-Ping Liu and Zhou Ping Xin,*Overcompressive shock waves*, Nonlinear evolution equations that change type, IMA Vol. Math. Appl., vol. 27, Springer, New York, 1990, pp. 139–145. MR**1074191**, https://doi.org/10.1007/978-1-4613-9049-7_11**18.**A. Majda,*Compressible fluid flow and systems of conservation laws in several space variables*, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR**748308****19.**Gianni Dal Maso, Philippe G. Lefloch, and François Murat,*Definition and weak stability of nonconservative products*, J. Math. Pures Appl. (9)**74**(1995), no. 6, 483–548. MR**1365258****20.**Marko Nedeljkov,*Delta and singular delta locus for one-dimensional systems of conservation laws*, Math. Methods Appl. Sci.**27**(2004), no. 8, 931–955. MR**2055283**, https://doi.org/10.1002/mma.480**21.**B. L. Roždestvenskiĭ and N. N. Janenko,*Systems of quasilinear equations and their applications to gas dynamics*, Translations of Mathematical Monographs, vol. 55, American Mathematical Society, Providence, RI, 1983. Translated from the second Russian edition by J. R. Schulenberger. MR**694243****22.**S. F. Shandarin and Ya. B. Zel′dovich,*The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium*, Rev. Modern Phys.**61**(1989), no. 2, 185–220. MR**989562**, https://doi.org/10.1103/RevModPhys.61.185**23.**V. M. Shelkovich,*An associative-commutative algebra of distributions that includes multipliers, and generalized solutions of nonlinear equations*, Mat. Zametki**57**(1995), no. 5, 765–783, 800 (Russian, with Russian summary); English transl., Math. Notes**57**(1995), no. 5-6, 536–549. MR**1347378**, https://doi.org/10.1007/BF02304423**24.**V. M. Shelkovich,*Delta-shock waves of a class of hyperbolic systems of conservation laws*, Patterns and waves (Saint Petersburg, 2002) AkademPrint, St. Petersburg, 2003, pp. 155–168. MR**2014201****25.**Wancheng Sheng and Tong Zhang,*The Riemann problem for the transportation equations in gas dynamics*, Mem. Amer. Math. Soc.**137**(1999), no. 654, viii+77. MR**1466909**, https://doi.org/10.1090/memo/0654**26.**De Chun Tan, Tong Zhang, and Yu Xi Zheng,*Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws*, J. Differential Equations**112**(1994), no. 1, 1–32. MR**1287550**, https://doi.org/10.1006/jdeq.1994.1093**27.**A. I. Volpert,*The space and quasilinear equations.*Math. USSR Sb.**2**(1967), 225-267.**28.**Hanchun Yang,*Riemann problems for a class of coupled hyperbolic systems of conservation laws*, J. Differential Equations**159**(1999), no. 2, 447–484. MR**1730728**, https://doi.org/10.1006/jdeq.1999.3629**29.**Ya. B. Zeldovich,*Gravitationnal instability: An approximate theory for large density perturbations.*Astron. Astrophys.**5**(1970), 84-89.

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC (2000):
35L65,
35L67,
76L05

Retrieve articles in all journals with MSC (2000): 35L65, 35L67, 76L05

Additional Information

**V. G. Danilov**

Affiliation:
Department of Mathematics, Moscow Technical University of Communication and Informatics, Aviamotornaya, 8a, 111024, Moscow, Russia

Email:
danilov@miem.edu.ru

**V. M. Shelkovich**

Affiliation:
Department of Mathematics, St.-Petersburg State Architecture and Civil Engineering University, 2 Krasnoarmeiskaya 4, 190005, St. Petersburg, Russia

Email:
shelkv@vs1567.spb.edu

DOI:
https://doi.org/10.1090/S0033-569X-05-00961-8

Keywords:
Hyperbolic systems of conservation laws,
zero-pressure gas dynamics system,
delta-shock wave type solutions,
the Rankine--Hugoniot conditions of delta-shocks,
the weak asymptotics method

Received by editor(s):
August 5, 2003

Published electronically:
August 17, 2005

Additional Notes:
The first author (V. D.) was supported in part by Grant 05-01-00912 of Russian Foundation for Basic Research, SEP-CONACYT Grant 41421, SEP-CONACYT Grant 43208 (Mexico)

The second author (V. S.) was supported in part by DFG Project 436 RUS 113/593/3, Grant 02-01-00483 of Russian Foundation for Basic Research, and SEP-CONACYT Grant 41421, SEP-CONACYT Grant 43208 (Mexico)

Article copyright:
© Copyright 2005
Brown University