Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Delta-shock wave type solution of hyperbolic systems of conservation laws


Authors: V. G. Danilov and V. M. Shelkovich
Journal: Quart. Appl. Math. 63 (2005), 401-427
MSC (2000): Primary 35L65; Secondary 35L67, 76L05
Published electronically: August 17, 2005
MathSciNet review: 2169026
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For two classes of hyperbolic systems of conservation laws new definitions of a $\delta$-shock wave type solution are introduced. These two definitions give natural generalizations of the classical definition of the weak solutions. It is relevant to the notion of $\delta$-shocks. The weak asymptotics method developed by the authors is used to describe the propagation of $\delta$-shock waves to the three types of systems of conservation laws and derive the corresponding Rankine-Hugoniot conditions for $\delta$-shocks.


References [Enhancements On Off] (What's this?)

  • 1. F. Bouchut, On zero pressure gas dynamics, Advances in kinetic theory and computing, Ser. Adv. Math. Appl. Sci., vol. 22, World Sci. Publ., River Edge, NJ, 1994, pp. 171–190. MR 1323183
  • 2. V. G. Danilov, V. P. Maslov, and V. M. Shelkovich, Algebras of the singularities of singular solutions of first-order quasilinear strictly hyperbolic systems, Teoret. Mat. Fiz. 114 (1998), no. 1, 3–55 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 114 (1998), no. 1, 1–42. MR 1756560, 10.1007/BF02557106
  • 3. V. G. Danilov, G. A. Omel′yanov, and V. M. Shelkovich, Weak asymptotics method and interaction of nonlinear waves, Asymptotic methods for wave and quantum problems, Amer. Math. Soc. Transl. Ser. 2, vol. 208, Amer. Math. Soc., Providence, RI, 2003, pp. 33–163. MR 1995392
  • 4. V. G. Danilov and V. M. Shelkovich, Propagation and interaction of nonlinear waves to quasilinear equations, Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000) Internat. Ser. Numer. Math., 140, vol. 141, Birkhäuser, Basel, 2001, pp. 267–276. MR 1882927
  • 5. V. G. Danilov and V. M. Shelkovich, Propagation and interaction of shock waves of quasilinear equation, Nonlinear Stud. 8 (2001), no. 1, 135–169. MR 1856223
  • 6. V. G. Danilov and V. M. Shelkovich, Propagation and interaction of delta-shock waves of a hyperbolic system of conservation laws, Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2003, pp. 483–492. MR 2053197
  • 7. V. G. Danilov, V. M. Shelkovich, Dynamics of propagation and interaction of $\delta$-shock waves in hyperbolic systems. pp.40, Preprint 2003-068 at the url: http://www.math.ntnu.no/conservation/2003/068.html (to appear in the Journal of Differential Equations)
  • 8. V. G. Danilov and V. M. Shelkovich, Propagation and interaction of 𝛿-shock waves of hyperbolic systems of conservation laws, Dokl. Akad. Nauk 394 (2004), no. 1, 10–14 (Russian). MR 2088475
  • 9. Weinan E, Yu. G. Rykov, and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys. 177 (1996), no. 2, 349–380. MR 1384139
  • 10. Grey Ercole, Delta-shock waves as self-similar viscosity limits, Quart. Appl. Math. 58 (2000), no. 1, 177–199. MR 1739044
  • 11. Jiaxin Hu, The Riemann problem for pressureless fluid dynamics with distribution solutions in Colombeau’s sense, Comm. Math. Phys. 194 (1998), no. 1, 191–205. MR 1628318, 10.1007/s002200050355
  • 12. Feimin Huang, Existence and uniqueness of discontinuous solutions for a class of nonstrictly hyperbolic systems, Advances in nonlinear partial differential equations and related areas (Beijing, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 187–208. MR 1690829
  • 13. K. T. Joseph, A Riemann problem whose viscosity solutions contain 𝛿-measures, Asymptotic Anal. 7 (1993), no. 2, 105–120. MR 1225441
  • 14. Barbara Lee Keyfitz and Herbert C. Kranzer, Spaces of weighted measures for conservation laws with singular shock solutions, J. Differential Equations 118 (1995), no. 2, 420–451. MR 1330835, 10.1006/jdeq.1995.1080
  • 15. Philippe LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, Nonlinear evolution equations that change type, IMA Vol. Math. Appl., vol. 27, Springer, New York, 1990, pp. 126–138. MR 1074190, 10.1007/978-1-4613-9049-7_10
  • 16. Jiequan Li and Tong Zhang, On the initial-value problem for zero-pressure gas dynamics, Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998) Internat. Ser. Numer. Math., vol. 130, Birkhäuser, Basel, 1999, pp. 629–640. MR 1717235
  • 17. Tai-Ping Liu and Zhou Ping Xin, Overcompressive shock waves, Nonlinear evolution equations that change type, IMA Vol. Math. Appl., vol. 27, Springer, New York, 1990, pp. 139–145. MR 1074191, 10.1007/978-1-4613-9049-7_11
  • 18. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308
  • 19. Gianni Dal Maso, Philippe G. Lefloch, and François Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9) 74 (1995), no. 6, 483–548. MR 1365258
  • 20. Marko Nedeljkov, Delta and singular delta locus for one-dimensional systems of conservation laws, Math. Methods Appl. Sci. 27 (2004), no. 8, 931–955. MR 2055283, 10.1002/mma.480
  • 21. B. L. Roždestvenskiĭ and N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Translations of Mathematical Monographs, vol. 55, American Mathematical Society, Providence, RI, 1983. Translated from the second Russian edition by J. R. Schulenberger. MR 694243
  • 22. S. F. Shandarin and Ya. B. Zel′dovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys. 61 (1989), no. 2, 185–220. MR 989562, 10.1103/RevModPhys.61.185
  • 23. V. M. Shelkovich, An associative-commutative algebra of distributions that includes multipliers, and generalized solutions of nonlinear equations, Mat. Zametki 57 (1995), no. 5, 765–783, 800 (Russian, with Russian summary); English transl., Math. Notes 57 (1995), no. 5-6, 536–549. MR 1347378, 10.1007/BF02304423
  • 24. V. M. Shelkovich, Delta-shock waves of a class of hyperbolic systems of conservation laws, Patterns and waves (Saint Petersburg, 2002) AkademPrint, St. Petersburg, 2003, pp. 155–168. MR 2014201
  • 25. Wancheng Sheng and Tong Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc. 137 (1999), no. 654, viii+77. MR 1466909, 10.1090/memo/0654
  • 26. De Chun Tan, Tong Zhang, and Yu Xi Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations 112 (1994), no. 1, 1–32. MR 1287550, 10.1006/jdeq.1994.1093
  • 27. A. I. Volpert, The space $BV$ and quasilinear equations. Math. USSR Sb. 2 (1967), 225-267.
  • 28. Hanchun Yang, Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations 159 (1999), no. 2, 447–484. MR 1730728, 10.1006/jdeq.1999.3629
  • 29. Ya. B. Zeldovich, Gravitationnal instability: An approximate theory for large density perturbations. Astron. Astrophys. 5 (1970), 84-89.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L65, 35L67, 76L05

Retrieve articles in all journals with MSC (2000): 35L65, 35L67, 76L05


Additional Information

V. G. Danilov
Affiliation: Department of Mathematics, Moscow Technical University of Communication and Informatics, Aviamotornaya, 8a, 111024, Moscow, Russia
Email: danilov@miem.edu.ru

V. M. Shelkovich
Affiliation: Department of Mathematics, St.-Petersburg State Architecture and Civil Engineering University, 2 Krasnoarmeiskaya 4, 190005, St. Petersburg, Russia
Email: shelkv@vs1567.spb.edu

DOI: http://dx.doi.org/10.1090/S0033-569X-05-00961-8
Keywords: Hyperbolic systems of conservation laws, zero-pressure gas dynamics system, delta-shock wave type solutions, the Rankine--Hugoniot conditions of delta-shocks, the weak asymptotics method
Received by editor(s): August 5, 2003
Published electronically: August 17, 2005
Additional Notes: The first author (V. D.) was supported in part by Grant 05-01-00912 of Russian Foundation for Basic Research, SEP-CONACYT Grant 41421, SEP-CONACYT Grant 43208 (Mexico)
The second author (V. S.) was supported in part by DFG Project 436 RUS 113/593/3, Grant 02-01-00483 of Russian Foundation for Basic Research, and SEP-CONACYT Grant 41421, SEP-CONACYT Grant 43208 (Mexico)
Article copyright: © Copyright 2005 Brown University


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2016 Brown University
Comments: qam-query@ams.org
AMS Website