wellposedness of 3d divcurl boundary value problems
Authors:
Giles Auchmuty and James C. Alexander
Journal:
Quart. Appl. Math. 63 (2005), 479508
MSC (2000):
Primary 35F15, 35J50, 35N10, 35Q60, 78A30
Published electronically:
August 18, 2005
MathSciNet review:
2169030
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Criteria for the existence and uniqueness of weak solutions of divcurl boundaryvalue problems on bounded regions in space with boundaries are developed. The boundary conditions are either given normal components of the field or else given tangential components of the field. Under natural integrability assumptions on the data, finiteenergy () solutions exist if and only if certain compatibility conditions hold on the data. When compatibility holds, the dimension of the solution space of the boundaryvalue problem depends on the differential topology of the region. The problem is wellposed with a unique solution in provided, in addition, certain line or surface integrals of the field are prescribed. Such extra integrals are described. These results depend on certain weighted orthogonal decompositions of vector fields which generalize the HodgeWeyl decomposition. They involve special scalar and vector potentials. The choices described here enable a decoupling of the equations and a weak interpretation of the boundary conditions. The existence of solutions for the equations for the potentials is obtained from variational principles. In each case, necessary conditions for solvability are described and then these conditions are shown to also be sufficient. Finally estimates of the solutions in terms of the data are obtained. The equations and boundary conditions treated here arise in the analysis of Maxwell's equations and in fluid mechanical problems.
 [1]
R.
Abraham, J.
E. Marsden, and T.
Ratiu, Manifolds, tensor analysis, and applications, 2nd ed.,
Applied Mathematical Sciences, vol. 75, SpringerVerlag, New York,
1988. MR
960687 (89f:58001)
 [2]
Charles
J. Amick, Some remarks on Rellich’s theorem and the
Poincaré inequality, J. London Math. Soc. (2)
18 (1978), no. 1, 81–93. MR 502660
(80a:46016), http://dx.doi.org/10.1112/jlms/s218.1.81
 [3]
Giles
Auchmuty, Orthogonal decompositions and bases for threedimensional
vector fields, Numer. Funct. Anal. Optim. 15 (1994),
no. 56, 455–488. MR 1281557
(95j:58158), http://dx.doi.org/10.1080/01630569408816576
 [4]
Giles
Auchmuty, Reconstruction of the velocity from the vorticity in
threedimensional fluid flows, R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sci. 454 (1998), no. 1970, 607–630. MR 1638305
(99f:76032), http://dx.doi.org/10.1098/rspa.1998.0176
 [5]
Giles
Auchmuty, The main inequality of 3D vector analysis, Math.
Models Methods Appl. Sci. 14 (2004), no. 1,
79–103. MR
2037781 (2005g:26018), http://dx.doi.org/10.1142/S0218202504003210
 [6]
Giles
Auchmuty and James
C. Alexander, 𝐿² wellposedness of planar divcurl
systems, Arch. Ration. Mech. Anal. 160 (2001),
no. 2, 91–134. MR 1864837
(2002i:35022), http://dx.doi.org/10.1007/s002050100156
 [7]
Philippe
Blanchard and Erwin
Brüning, Variational methods in mathematical physics,
Texts and Monographs in Physics, SpringerVerlag, Berlin, 1992. A unified
approach; Translated from the German by Gillian M. Hayes. MR 1230382
(95b:58049)
 [8]
Jürgen
Bolik and Wolf
von Wahl, Estimating ∇𝑢 in terms of
𝑑𝑖𝑣𝑢,
𝑐𝑢𝑟𝑙𝑢, either (𝜈,𝑢)
or 𝜈×𝑢 and the topology, Math. Methods Appl.
Sci. 20 (1997), no. 9, 737–744. MR 1446207
(98d:35023), http://dx.doi.org/10.1002/(SICI)10991476(199706)20:9<737::AIDMMA863>3.3.CO;29
 [9]
Robert
Dautray and JacquesLouis
Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 2, SpringerVerlag, Berlin, 1988. Functional and
variational methods; With the collaboration of Michel Artola, Marc Authier,
Philippe Bénilan, Michel Cessenat, Jean Michel Combes,
Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude
Zuily; Translated from the French by Ian N. Sneddon. MR 969367
(89m:00001)
Robert
Dautray and JacquesLouis
Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 3, SpringerVerlag, Berlin, 1990. Spectral theory and
applications; With the collaboration of Michel Artola and Michel Cessenat;
Translated from the French by John C. Amson. MR 1064315
(91h:00004a)
Robert
Dautray and JacquesLouis
Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 4, SpringerVerlag, Berlin, 1990. Integral equations
and numerical methods; With the collaboration of Michel Artola, Philippe
Bénilan, Michel Bernadou, Michel Cessenat, JeanClaude
Nédélec, Jacques Planchard and Bruno Scheurer; Translated
from the French by John C. Amson. MR 1081946
(91h:00004b)
Robert
Dautray and JacquesLouis
Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 5, SpringerVerlag, Berlin, 1992. Evolution problems.
I; With the collaboration of Michel Artola, Michel Cessenat and
Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075
(92k:00006)
Robert
Dautray and JacquesLouis
Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 6, SpringerVerlag, Berlin, 1993. Evolution problems.
II; With the collaboration of Claude Bardos, Michel Cessenat, Alain
Kavenoky, Patrick Lascaux, Bertrand Mercier, Olivier Pironneau, Bruno
Scheurer and Rémi Sentis; Translated from the French by Alan Craig.
MR
1295030 (95e:00001)
 [10]
Lawrence
C. Evans, Partial differential equations, Graduate Studies in
Mathematics, vol. 19, American Mathematical Society, Providence, RI,
1998. MR
1625845 (99e:35001)
 [11]
Lawrence
C. Evans and Ronald
F. Gariepy, Measure theory and fine properties of functions,
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
(93f:28001)
 [12]
C.
Foiaş and R.
Temam, Remarques sur les équations de NavierStokes
stationnaires et les phénomènes successifs de
bifurcation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
5 (1978), no. 1, 28–63 (French). MR 0481645
(58 #1749)
 [13]
K.
O. Friedrichs, Differential forms on Riemannian manifolds,
Comm. Pure Appl. Math. 8 (1955), 551–590. MR 0087763
(19,407a)
 [14]
V.
Girault and P.A.
Raviart, An analysis of a mixed finite element method for the
NavierStokes equations, Numer. Math. 33 (1979),
no. 3, 235–271. MR 553589
(81a:65100), http://dx.doi.org/10.1007/BF01398643
 [15]
P. R. Kotiuga and P. P. Silvester, ``Vector potential formulation for threedimensional magnetostatics," J. Appl. Physics, 53 (1982), 83998401.
 [16]
Rainer
Picard, On the boundary value problems of electro and
magnetostatics, Proc. Roy. Soc. Edinburgh Sect. A 92
(1982), no. 12, 165–174. MR 667134
(83m:78006), http://dx.doi.org/10.1017/S0308210500020023
 [17]
Jukka
Saranen, On generalized harmonic fields in domains with anisotropic
nonhomogeneous media, J. Math. Anal. Appl. 88 (1982),
no. 1, 104–115. MR 661405
(84d:78004a), http://dx.doi.org/10.1016/0022247X(82)901792
 [18]
Jukka
Saranen, On electric and magnetic problems for vector fields in
anisotropic nonhomogeneous media, J. Math. Anal. Appl.
91 (1983), no. 1, 254–275. MR 688544
(85i:78004), http://dx.doi.org/10.1016/0022247X(83)90104X
 [19]
Hermann
Weyl, The method of orthogonal projection in potential theory,
Duke Math. J. 7 (1940), 411–444. MR 0003331
(2,202a)
 [20]
Eberhard
Zeidler, Nonlinear functional analysis and its applications.
III, SpringerVerlag, New York, 1985. Variational methods and
optimization; Translated from the German by Leo F. Boron. MR 768749
(90b:49005)
 [1]
 R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, 2nd. ed., SpringerVerlag, New York (1988). MR 0960687 (89f:58001)
 [2]
 C. J. Amick, ``Some remarks on Rellich's theorem and the Poincaré inequality," J. London Math. Soc. (2) 18 (1973), 8193. MR 0502660 (80a:46016)
 [3]
 G. Auchmuty, ``Orthogonal decompositions and bases for threedimensional vector fields," Numer. Funct. Anal. and Optimiz. 15 (1994), 445488. MR 1281557 (95j:58158)
 [4]
 G. Auchmuty, ``Reconstruction of the velocity from the vorticity in threedimensional fluid flows," Royal Soc. London Proc. Ser A Math. Phys. Eng. Sci. A 454 (1998), 607630. MR 1638305 (99f:76032)
 [5]
 G. Auchmuty, ``The Main Inequality of 3d vector analysis," Math Modelling and Methods in the Applied Sciences, 14 (2004), 79103. MR 2037781
 [6]
 G. Auchmuty and J. C. Alexander, ``wellposedness of planar divcurl systems," Arch Rat Mech Anal, 160 (2001), 91134. MR 1864837 (2002i:35022)
 [7]
 P. Blanchard and E. Brüning, Variational Methods in Mathematical Physics, SpringerVerlag, Berlin (1992). MR 1230382 (95b:58049)
 [8]
 J. Bolik and W. von Wahl, ``Estimating in terms of div , curl , either or and the topology," Math. Methods in the Applied Sciences, 20 (1997), 737744. MR 1446207 (98d:35023)
 [9]
 R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volumes 16, SpringerVerlag, Berlin (1990). MR 0969367 (89m:00001); MR 1064315 (91h:00004a); MR 1081946 (91h:00004b); MR 1156075 (92k:00006); MR 1295030 (95e:00001)
 [10]
 L. C. Evans, Partial Differential Equations AMS, Providence, (1998). MR 1625845 (99e:35001)
 [11]
 L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton (1992). MR 1158660 (93f:28001)
 [12]
 C. Foias and R. Temam, ``Remarques sur les quations de NavierStokes stationnaires et les phénoménes successifs de bifurcation," Annali Scuola Normale SuperiorePisa, (1978), 2963. MR 0481645 (58:1749)
 [13]
 K. O. Friedrichs, ``Differential forms on Riemannian manifolds," Comm. Pure & Applied Math., 8 (1955), 551590. MR 0087763 (19:407a)
 [14]
 V. Girault and P. A. Raviart, Finite Element Methods for the NavierStokes Equations, SpringerVerlag, Berlin (1986). MR 0553589 (81a:65100)
 [15]
 P. R. Kotiuga and P. P. Silvester, ``Vector potential formulation for threedimensional magnetostatics," J. Appl. Physics, 53 (1982), 83998401.
 [16]
 R. Picard, ``On the boundary value problems of electro and magnetostatics," Proc. Roy. Soc. Edinburgh, 92A (1982), 165174. MR 0667134 (83m:78006)
 [17]
 J. Saranen, ``On generalized harmonic fields in domains with anisotropic nonhomogeneous media," J. Math. Anal. Appl., 88 (1982), 104115. MR 0661405 (84d:78004a)
 [18]
 J. Saranen, ``On Electric and Magnetic Problems for Vector Fields in anisotropic nonhomogeneous media," J. Math. Anal. Appl., 91 (1983), 254275. MR 0688544 (85i:78004)
 [19]
 H. Weyl, ``The method of orthogonal projection in potential theory," Duke Math J., 7 (1940), 411444. MR 0003331 (2:202a)
 [20]
 E. Zeidler, Nonlinear Functional Analysis and its Applications, III: Variational Methods and Optimization, SpringerVerlag, New York (1985). MR 0768749 (90b:49005)
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2000):
35F15,
35J50,
35N10,
35Q60,
78A30
Retrieve articles in all journals
with MSC (2000):
35F15,
35J50,
35N10,
35Q60,
78A30
Additional Information
Giles Auchmuty
Affiliation:
Department of Mathematics, University of Houston, Houston, Texas 772043008
Email:
auchmuty@uh.edu
James C. Alexander
Affiliation:
Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 441067058
Email:
james.alexander@case.edu
DOI:
http://dx.doi.org/10.1090/S0033569X05009725
PII:
S 0033569X(05)009725
Received by editor(s):
October 13, 2004
Published electronically:
August 18, 2005
Article copyright:
© Copyright 2005 Brown University
