Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Steady states of the Vlasov-Maxwell system


Author: Jack Schaeffer
Journal: Quart. Appl. Math. 63 (2005), 619-643
MSC (2000): Primary 35Q60; Secondary 86A25
DOI: https://doi.org/10.1090/S0033-569X-05-00984-5
Published electronically: September 22, 2005
MathSciNet review: 2187923
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Vlasov-Maxwell system models collisionless plasma. Solutions are considered that depend on one spatial variable, $x$, and two velocity variables, $v_1$ and $v_2$. As $x\rightarrow - \infty$ it is required that the phase space densities of particles approach a prescribed function, $F\left(v_1,v_2\right)$, and all field components approach zero. It is assumed that $F\left(v_1,v_2\right) = 0$ if $v_1 \leq W_1$, where $W_1$ is a positive constant. An external magnetic field is prescribed and taken small enough so that no particle is reflected ($v_1$ remains positive).

The main issue is to identify the large-time behavior; is a steady state approached and, if so, can it be identified from the time independent Vlasov-Maxwell system? The time-dependent problem is solved numerically using a particle method, and it is observed that a steady state is approached (on a bounded $x$ interval) for large time. For this steady state, one component of the electric field is zero at all points, the other oscillates without decay for $x$ large; in contrast the magnetic field tends to zero for large $x$. Then it is proven analytically that if the external magnetic field is sufficiently small, then (a reformulation of) the steady problem has a unique solution with $B \rightarrow 0$ as $x \rightarrow +\infty$. Thus the ``downstream'' condition, $B \rightarrow 0$ as $x\rightarrow + \infty$, is used to identify the large time limit of the system.


References [Enhancements On Off] (What's this?)

  • [1] Batt, J. and Fabian, K., Stationary Solutions of the Relativistic Vlasov-Maxwell System of Plasma and Physics, Chin. Ann. of Math., 14B:3 (1993), 253-278. MR 1264300 (95a:82107)
  • [2] Bernstein, I., Greene, J., and Kruskal, M., Exact Nonlinear Plasma Oscillations, Phys. Rev., 108, 3 (1957), 546-550. MR 0102329 (21:1122)
  • [3] Birdsall, C. K. and Langdon, A. B., Plasma Physics via Computer Simulation, McGraw Hill (1985).
  • [4] DiPerna, R. and Lions, P.-L., Global Solutions of Vlasov-Maxwell Systems, Comm. Pure Appl. Math, 42 (1989), 729-757. MR 1003433 (90i:35236)
  • [5] Glassey, R., The Cauchy Problem in Kinetic Theory, SIAM: Philadelphia (1996). MR 1379589 (97i:82070)
  • [6] Glassey, R. and Schaeffer, J., Global Existence of the Relativistic Vlasov-Maxwell System with Nearly Neutral Initial Data, Comm. Math. Phys., 119 (1988), 353-384. MR 0969207 (90b:82042)
  • [7] Glassey, R. and Schaeffer, J., On the One and One-Half Dimensional Relativistic Vlasov-Maxwell System, Math. Meth. Appl. Sci., 13 (1990), 169-179. MR 1066384 (91g:82054)
  • [8] Glassey, R. and Schaeffer, J., The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part I, Arch. Rat. Mech. Anal., 141 (1998), 331-354. MR 1620506 (99d:82071)
  • [9] Glassey, R. and Schaeffer, J., The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part II, Arch. Rat. Mech. Anal., 141 (1998), 355-374. MR 1620506 (99d:82071)
  • [10] Glassey, R. and Schaeffer, J., The Two and One-Half Dimensional Relativistic Vlasov-Maxwell System, Comm. Math. Phys., 185 (1997), 257-284. MR 1463042 (98f:35143)
  • [11] Glassey, R. and Schaeffer, J., Convergence of a Particle Method for the Relativistic Vlasov-Maxwell System, SIAM Journal on Numerical Analysis, 28(1) (1991), 1-25. MR 1083322 (92c:65105)
  • [12] Glassey R. and Strauss, W., Absence of Shocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys., 113 (1987), no. 2, 191-208. MR 0919231 (88k:76034)
  • [13] Glassey, R. and Strauss, W., Similarity Formation in a Collisionless Plasma Could Occur Only at High Velocities, Arch. Rat. Mech. Anal., 92 (1986), 59-90. MR 0816621 (87j:82064)
  • [14] Guo, Y., Stable Magnetic Equilibria in Collisionless Plasmas, Comm. Pure and Applied Math., 50 (1997), 891-933. MR 1459591 (98g:76080)
  • [15] Guo, Y. and Ragazzo, C. G., On Steady States in a Collisionless Plasma, Comm. Pure and Applied Math., 49 (1996), 1145-1174. MR 1406662 (97i:82075)
  • [16] Guo, Y. and Strauss, W., Instability of periodic BGK equilibria, Comm. Pure and Applied Math., 48 (1995), 861-846. MR 1361017 (96j:35252)
  • [17] Guo, Y. and Strauss, W., Nonlinear Instability of Double-Humped Equilibria, Ann. Inst. Henri Poincaré, 12 (1995), 339-352. MR 1340268 (96e:35139)
  • [18] Guo, Y. and Strauss, W., Unstable oscillatory-tail solutions, SIAM J. Math. Analysis, 30, no. 5 (1999), 1076-1114. MR 1709788 (2000g:35210)
  • [19] Horst, E., On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. Appl. Sci. 16 (1993), 75-85. MR 1200156 (94c:45011)
  • [20] Lions, P.-L. and Perthame, B., Propogation of Moments and Regularity for the Three Dimensional Vlasov-Poisson System, Inventions Mathematical, 105 (1991), 415-430. MR 1115549 (92e:35160)
  • [21] Morawetz, C. S., Magnetohydrodynamical shock structure without collisions, Phys. Fluids, 4 (1961), 988-1006.
  • [22] Pfaffelmoser, K., Global Classical Solutions of the Vlasov-Poisson System in Three Dimensions for General Initial Data, J. Diff. Eqn., 95(2) (1992), 281-303. MR 1165424 (93d:35170)
  • [23] Rein, G., Nonlinear Stability for the Vlasov-Poisson system - the energy - Cashmir method, Math. Meth. in the Appl. Sci., 17 (1994), 1129-1140. MR 1303559 (95i:35302)
  • [24] Rein, G., Existence of Stationary Collisionless Plasmas on Bounded Domains, Math. Meth. in the Appl. Sci., 15 (1992), 365-374. MR 1170533 (93d:82076)
  • [25] Rein, G., Generic Global Solutions of the Relativistic Vlasov-Maxwell System of Plasma Physics, Comm. Math. Phys., 135 (1990), 41-78. MR 1086751 (91m:35227)
  • [26] Schaeffer, J., Global Existence of Smooth Solutions to the Vlasov-Poisson System in Three Dimensions, Comm. Part. Diff. Eqn., 16(8 and 9) (1991), 1313-1335. MR 1132787 (92g:82113)
  • [27] Schaeffer, J., Steady States for a One Dimensional Model of the Solar Wind, Quart. of Appl. Math., 59 (2001), 507-528. MR 1848532 (2002j:82114)
  • [28] Schaeffer, J., The Classical Limit of the Relativistic Vlasov-Maxwell System, Commun. Math. Phys., 104 (1986), 403-421. MR 0840744 (87j:82065)
  • [29] Schaeffer, J., A Small Data Theorem for Collisionless Plasma that Includes High Velocity Particles, Indiana University Mathematics Journal 53, 1 (2004), 1-34. MR 2048181 (2005f:35300)
  • [30] Tidman, D. and Krall, N., Shock Waves in Collisionless Plasmas, Wiley-Interscience (1971).

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35Q60, 86A25

Retrieve articles in all journals with MSC (2000): 35Q60, 86A25


Additional Information

Jack Schaeffer
Affiliation: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: js5m@andrew.cmu.edu

DOI: https://doi.org/10.1090/S0033-569X-05-00984-5
Received by editor(s): October 13, 2004
Published electronically: September 22, 2005
Article copyright: © Copyright 2005 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society