Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Homogenization of stratified thermoviscoplastic materials


Authors: Nicolas Charalambakis and François Murat
Journal: Quart. Appl. Math. 64 (2006), 359-399
MSC (2000): Primary 74Q15, 74Q10, 35B27; Secondary 74C10, 74F05, 35Q72, 35M20, 35K55
DOI: https://doi.org/10.1090/S0033-569X-06-01017-3
Published electronically: May 22, 2006
MathSciNet review: 2243868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we study the homogenization of the system of partial differential equations

\begin{displaymath} \begin{array}{l} \displaystyle{\rho^\varepsilon(x) {\partia... ...\partial v^\varepsilon \over \partial x}\right)^2,} \end{array}\end{displaymath}

posed in $ a < x < b$, $ 0 < t < T$, completed by boundary conditions on $ v^\varepsilon$ and by initial conditions on $ v^\varepsilon$ and $ \theta^\varepsilon$. The unknowns are the velocity $ v^\varepsilon$ and the temperature $ \theta^\varepsilon$, while the coefficients $ \rho^\varepsilon$, $ \mu^\varepsilon$ and $ c^\varepsilon$ are data which are assumed to satisfy

$\displaystyle 0 < c_1 \leq \mu^\varepsilon(x,s) \leq c_2, \quad 0 < c_3 \leq c^\varepsilon(x,s) \leq c_4,\quad 0 < c_5 \leq \rho^\varepsilon(x) \leq c_6,$    
$\displaystyle \displaystyle{- c_7 \leq {\partial \mu^\varepsilon \over \partial... ...t c^\varepsilon(x,s) - c^\varepsilon(x,s')\vert\leq \omega(\vert s - s'\vert).}$    

This sequence of one-dimensional systems is a model for the homogenization of nonhomogeneous, stratified, thermoviscoplastic materials exhibiting thermal softening and a temperature-dependent rate of plastic work converted into heat.

Under the above hypotheses we prove that this system is stable by homogenization. More precisely one can extract a subsequence $ \varepsilon'$ for which the velocity $ v^{\varepsilon'}$ and the temperature $ \theta^{\varepsilon'}$ converge to some homogenized velocity $ v^0$ and some homogenized temperature $ \theta^0$ which solve a system similar to the system solved by $ v^\varepsilon$ and $ \theta^\varepsilon$, for coefficients $ \rho^0$, $ \mu^0$ and $ c^0$ which satisfy hypotheses similar to the hypotheses satisfied by $ \rho^\varepsilon$, $ \mu^\varepsilon$ and $ c^\varepsilon$. These homogenized coefficients $ \rho^0$, $ \mu^0$ and $ c^0$ are given by some explicit (even if sophisticated) formulas. In particular, the homogenized heat coefficient $ c^0$ in general depends on the temperature even if the heterogeneous heat coefficients $ c^\varepsilon$ do not depend on it.


References [Enhancements On Off] (What's this?)

  • 1. J. Aboudi, M. Pindera, and S.M. Arnold, Higher-order theory for functionally graded materials, Composite Part B (Engineering) 30 (1999), 777-832.
  • 2. J. Aboudi, M. Pindera, and S.M. Arnold, Higher-order theory for periodic multiphase materials with inelastic phases, Int. J. Plasticity 19 (2003), 805-847.
  • 3. Y. Bansal and M.J. Pindera, A second look at the higher-order theory for periodic multiphase materials, J. Appl. Mech. 72 (2005), 177-195.
  • 4. R.C. Batra and B.M. Love, Adiabatic shear bands in functionally graded materials, J. Thermal Stresses 27 (2004), 1101-1123.
  • 5. T. Baxevanis, T. Katsaounis, and A. Tzavaras, A finite element method for computing shear band formation, in Proceedings of the International Hyperbolic Conference (Osaka 2004), Yokohama Publ., Yokohama, to appear.
  • 6. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978. MR 0503330 (82h:35001)
  • 7. Nicolas Charalambakis and François Murat, Weak solutions to the initial-boundary value problem for the shearing of nonhomogeneous thermoviscoplastic materials, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 3-4, 257–265. MR 1037731, https://doi.org/10.1017/S0308210500024124
  • 8. N. Charalambakis and F. Murat, Approximation by finite elements, existence and uniqueness for a model of stratified thermoviscoplastic materials, Ric. Mat. 55 (2006), to appear.
  • 9. C.M. Dafermos and L. Hsiao, Adiabatic shearing of incompressible fluids with temperature-dependent viscosity, Quart. Appl. Math. 41 (1983), 45-58. MR 0700660 (84g:76026)
  • 10. J. Hodowany, G. Ravichandran, A.J. Rosakis, and P. Rosakis, Partition of plastic work into heat and stored energy in metals, J. Exp. Mech. 40 (2000), 113-123.
  • 11. Z.H. Jin and R.C. Batra, Some basic fracture mechanics concepts in functionally graded materials, J. Mech. Phys. Solids 44 (1996), 1221-1235.
  • 12. P. Rosakis, A.J. Rosakis, G. Ravichandran, and J. Hodowany, A thermodynamical internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids 48 (2000), 582-607.
  • 13. P. Rosakis, A.J. Rosakis, G. Ravichandran, and J. Hodowany, On the conversion of plastic work into heat during high-strain-rate deformation, AIP Conference Proceedings 620 (2002), 557-562.
  • 14. E. Sanchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, vol. 127, Springer Verlag, Berlin, Heidelberg, 1978.MR 0578345 (82j:35010)
  • 15. L. Tartar, Homogénéisation et compacité par compensation, Cours Peccot, Collège de France, Paris, March 1977. Partly written in: F. Murat, $ H$-convergence, Séminaire d'Analyse Fonctionnelle et Numérique 1977-1978, Université d'Alger, Alger, multicopied, 34 pages. English translation: F. Murat and L. Tartar, $ H$-convergence, in Topics in the mathematical modelling of composite materials, ed. by A. Cherkaev and R.V. Kohn, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1997, pp. 21-43. MR 0557520 (81c:73012)
  • 16. A. Tzavaras, Shearing of materials exhibiting thermal softening or temperature dependent viscosity, Quart. Appl. Math. 44 (1986), 1-12. MR 0840438 (87m:76007)
  • 17. A. Tzavaras, Plastic shearing of materials exhibiting strain hardening or strain softening, Arch. Rat. Mech. Anal. 94 (1986), 39-58. MR 0831769 (87e:73054)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 74Q15, 74Q10, 35B27, 74C10, 74F05, 35Q72, 35M20, 35K55

Retrieve articles in all journals with MSC (2000): 74Q15, 74Q10, 35B27, 74C10, 74F05, 35Q72, 35M20, 35K55


Additional Information

Nicolas Charalambakis
Affiliation: Department of Civil Engineering, Aristotle University, GR 54124 Thessaloniki, Greece
Email: charalam@civil.auth.gr

François Murat
Affiliation: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte courrier 187, 75252 Paris Cedex 05, France
Email: murat@ann.jussieu.fr

DOI: https://doi.org/10.1090/S0033-569X-06-01017-3
Keywords: Homogenization, thermoviscoplastic materials
Received by editor(s): December 1, 2005
Published electronically: May 22, 2006
Article copyright: © Copyright 2006 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society