Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Spatial behavior for a fourth-order dispersive equation


Authors: Ramon Quintanilla and Giuseppe Saccomandi
Journal: Quart. Appl. Math. 64 (2006), 547-560
MSC (2000): Primary 35Q72; Secondary 74J05
DOI: https://doi.org/10.1090/S0033-569X-06-01025-2
Published electronically: July 5, 2006
MathSciNet review: 2259054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we investigate the spatial behavior of a linear equation of fourth order which models several mechanical situations when dispersive and dissipative effects are taken into account. In particular, this equation models the extensional vibration of a bar when we assume that external friction, with a rough substrate for example, is present. We show that for such an equation a Phragmén-Lindelöf alternative of exponential type can be obtained. A bound for the amplitude term in terms of boundary data is obtained. Moreover, when friction is absent, we obtain exponential decay results in the case of harmonic vibrations and we prove a polynomial decay estimate for general solutions.


References [Enhancements On Off] (What's this?)

  • 1. K.A. Ames and B. Straughan. Non-Standard and Improperly Posed Problems. Academic Press, San Diego, (1997).
  • 2. S. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy methods for free boundary problems, Progress in Nonlinear Differential Equations and their Applications, vol. 48, Birkhäuser Boston, Inc., Boston, MA, 2002. Applications to nonlinear PDEs and fluid mechanics. MR 1858749
  • 3. M. Destrade and G. Saccomandi. Waves and vibrations in a solid of second grade, to appear in Proceedings of WASCOM 2005, World Scientific, Singapore (2005).
  • 4. A. Cemal Eringen, Theory of thermo-microstretch fluids and bubbly liquids, Internat. J. Engrg. Sci. 28 (1990), no. 2, 133–143. MR 1040726, https://doi.org/10.1016/0020-7225(90)90063-O
  • 5. J. N. Flavin, R. J. Knops and L.E. Payne, Decay estimates for the constrained elastic cylinder of variable cross section, Quart. Appl. Math., XLVII, (1989) 325-350. MR 0998106 (90g:73026)
  • 6. James N. Flavin and Salvatore Rionero, Qualitative estimates for partial differential equations, Library of Engineering Mathematics, CRC Press, Boca Raton, FL, 1996. An introduction. MR 1396085
  • 7. M. Hayes and G. Saccomandi. Finite amplitude transverse waves in special incompressible viscoelastic solids, J. of Elasticity, 59, (2000) 213-225.
  • 8. Darryl D. Holm, Vakhtang Putkaradze, Patrick D. Weidman, and Beth A. Wingate, Boundary effects on exact solutions of the Lagrangian-averaged Navier-Stokes-𝛼 equations, J. Statist. Phys. 113 (2003), no. 5-6, 841–854. Progress in statistical hydrodynamics (Santa Fe, NM, 2002). MR 2036873, https://doi.org/10.1023/A:1027364720090
  • 9. Cornelius O. Horgan, Recent developments concerning Saint-Venant’s principle: an update, AMR 42 (1989), no. 11, 295–303. MR 1021553, https://doi.org/10.1115/1.3152414
  • 10. C.O. Horgan. Recent developments concerning Saint-Venant's Principle: A second update, Applied Mechanics Reviews, 49, (1996) 101-111.
  • 11. C.O. Horgan and J.K. Knowles. Recent developments concerning Saint-Venant's Principle, Advances in Applied Mechanics (Ed. J. W. Hutchinson and T.Y. Wu), 23, Academic Press, New York (1983) 179-269. MR 0889288 (88a:73009)
  • 12. P. M. Jordan and C. Feuillade.
    On the propagation of transient acoustic waves in isothermal bubbly liquids, Physics Letters A, 350 (2006) 56-62.
  • 13. Markus Lazar, Gérard A. Maugin, and Elias C. Aifantis, On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, Internat. J. Solids Structures 43 (2006), no. 6, 1404–1421. MR 2200992, https://doi.org/10.1016/j.ijsolstr.2005.04.027
  • 14. M.C. Leseduarte and R. Quintanilla. Some qualitative properties of solutions of the system governing acoustic waves in bubbly liquids. International Journal of Engineering Science, to appear (2006).
  • 15. A. E. H. Love, A treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. Fourth Ed. MR 0010851
  • 16. Gérard A. Maugin, Nonlinear waves in elastic crystals, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1999. Oxford Science Publications. MR 1772390
  • 17. J. Muñoz-Rivera and R. Quintanilla. On the time polynomial decay in elastic solids with voids. Manuscript (2005).
  • 18. A. F. Pazoto, J. C. Vila Bravo, and J. E. Muñoz Rivera, Asymptotic stability of semigroups associated to linear weak dissipative systems, Math. Comput. Modelling 40 (2004), no. 3-4, 387–392. MR 2091069, https://doi.org/10.1016/j.mcm.2003.10.048
  • 19. M. B. Rubin, P. Rosenau and O. Gottlieb. Continuum model of dispersion caused by an inherent material characteristic length, J. Appl. Phys. 77, (1995) 4054-4063.
  • 20. R. Saxton. The Cauchy and backward-Cauchy problem for a nonlinear hyperelastic infinite rod, Lectures Notes in Mathematics, 1032, Springer-Verlag. Berlin, (1982) 427-448. MR 0742654 (85k:35215)
  • 21. Piero Villaggio, Mathematical models for elastic structures, Cambridge University Press, Cambridge, 1997. MR 1486043
  • 22. L. van Wijngaarden. One-dimensional flow of liquids containing small gas bubbles, Ann. Rev. Fluid Mech., 4, (1972) 369-396.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35Q72, 74J05

Retrieve articles in all journals with MSC (2000): 35Q72, 74J05


Additional Information

Ramon Quintanilla
Affiliation: Matemática Aplicada 2 Universidad Politècnica de Catalunya Colón, 11, Terrassa. Barcelona, Spain
Email: Ramon.Quintanilla@upc.edu

Giuseppe Saccomandi
Affiliation: Dipartimento di Ingegneria dell’Innovazione, Sezione Industriale, Università di Lecce, Italy
Email: giuseppe.saccomandi@unile.it

DOI: https://doi.org/10.1090/S0033-569X-06-01025-2
Keywords: Phragm\'en-Lindel\"of alternative, dispersive effects, friction
Received by editor(s): December 14, 2005
Published electronically: July 5, 2006
Additional Notes: This work is supported by the project “Aspectos de Estabilidad en Termomecánica"(BFM2003-00309), by the GNMF of INDAM and PRIN 2003 “Problemi Matematici Nonlineari e Stabilità nei Modelli del Continuo". GS acknowledges the hospitality and support of UPC.
Article copyright: © Copyright 2006 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society