Peristaltic transport of a HerschelBulkley fluid in contact with a Newtonian fluid
Authors:
K. Vajravelu, S. Sreenadh and V. Ramesh Babu
Journal:
Quart. Appl. Math. 64 (2006), 593604
MSC (2000):
Primary 34B15, 92C10
Published electronically:
September 11, 2006
MathSciNet review:
2284461
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Peristaltic transport of HerschelBulkley fluid in contact with a Newtonian fluid in a channel is investigated for its various applications to flows with physiological fluids (blood, chyme, intrauterine fluid, etc.). The primary application is when blood flows through small vessels; blood has a peripheral layer of plasma and a core region of suspension of all the erythrocytes. That is, in the modeling of blood flow, one needs to consider the core region consisting of a yield stress fluid and the peripheral region consisting of a Newtonian fluid. Peristaltic pumping of a yield stress fluid in contact with a Newtonian fluid has not previously been studied in detail. Our goal is to initiate such a study. The HerschelBulkley fluid model considered here reduces to the power law model in the absence of yield stress. The stream function, the velocity field, and the equation of the interface are obtained and discussed. When the yield stress and when the index , our results agree with those of Brasseur et al. (J. Fluid Mech. 174 (1987), 495) for peristaltic transport of the Newtonian fluid. It is observed that for a given flux the pressure rise increases with an increase in the amplitude ratio . Furthermore, the results obtained for the flow characteristics reveal many interesting behaviors that warrant further study of the peristaltic transport models with two immiscible physiological fluids.
 1.
T. W. Latham, Fluid motions in a peristaltic pump, M.S. Thesis, M.I.T., Cambridge, Massachusetts, 1966.
 2.
A. H. Shapiro, Pumping and retrograde diffusion in peristaltic waves, Proc. Workshop in Ureteral Reflux in Children (1967), 109126.
 3.
J. C. Burns and T. Parkes, Peristaltic motion, J. Fluid Mech. 29 (1967), 731743.
 4.
A. H. Shapiro, M. Y. Jaffrin and S. L. Weinberg, Peristaltic pumping with log wavelength at low Reynolds number, J. Fluid Mech. 37 (1969), 799825.
 5.
M. Y. Jaffrin, Inertia and streamline curvature on peristaltic pumping, Int. J. Engrg. Sci. 11 (1973), 681699.
 6.
C. Barton and S. Raynor, Peristaltic flow in tubes, Bull. Math. Biophysics 30 (1968), 663680.
 7.
C. C. Yin and Y. C. Fung, Peristaltic waves in circular cylindrical tubes, Trans. ASME J. Appl. Mech. 36 (1969), 579587.
 8.
M. Y. Jaffrin and A. H. Shapiro, Peristaltic pumping, Ann. Rev. Fluid Mech. 3 (1971), 1336.
 9.
J.
N. Kapur, Mathematical models in biology and medicine,
Affiliated EastWest Press Pvt. Ltd., New Delhi, 1985. MR 806352
(87k:92001)
 10.
G. W. S. Blair and D. C. Spanner, An Introduction to Amsterdam, Oxford and New York; Elsevier Biorheology Scient. Pub. Co., 1974.
 11.
P. Chaturani and R. P. Samy, A study of nonNewtonian aspects of blood flow through stenosed arteries and its application in arterial diseases, J. Biorheology 22 (1985), 521531.
 12.
G. B. Bohme and R. Friedrich, Peristaltic flow of viscoelastic liquids, J. Fluid Mech. 138 (1983), 109122.
 13.
E. F. E. Shehawey and K. S. Mekheimer, Couplestresses in peristaltic transport of fluids, J. Physics D: Appl. Phys. 27 (1994), 11631170.
 14.
O. Eytan, A. J. Jaffa and D. Elad, Peristaltic flow in a tapered channel; application to embryo transport within the uterine cavity, J. Medical Engrg. Physics 23 (2001), 473482.
 15.
J. M. Krishnan and K. R. Rajagopal, Review of the uses and modeling of bitumen from ancient to modern times, Appl. Mech. Reviews 56 (2003), 149214.
 16.
J.
Málek, J.
Nečas, M.
Rokyta, and M.
R\ocirc{u}žička, Weak and measurevalued solutions to
evolutionary PDEs, Applied Mathematics and Mathematical Computation,
vol. 13, Chapman & Hall, London, 1996. MR 1409366
(97g:35002)
 17.
J.
Málek, J.
Nečas, and K.
R. Rajagopal, Global existence of solutions for flows of fluids
with pressure and shear dependent viscosities, Appl. Math. Lett.
15 (2002), no. 8, 961–967. MR 1925921
(2003g:76032), http://dx.doi.org/10.1016/S08939659(02)000708
 18.
J.
Málek, K.
R. Rajagopal, and M.
R\ocirc{u}žička, Existence and regularity of
solutions and the stability of the rest state for fluids with shear
dependent viscosity, Math. Models Methods Appl. Sci.
5 (1995), no. 6, 789–812. MR 1348587
(96i:76002), http://dx.doi.org/10.1142/S0218202595000449
 19.
A. N. Alexandrou, T. M. McGilvreay and G. Burgos, Steady HerschelBulkley fluid flow in threedimensional expansions, J. NonNewtonian Fluid Mech. 100 (2001), 7796.
 20.
J.
B. Shukla, R.
S. Parihar, B.
R. P. Rao, and S.
P. Gupta, Effects of peripherallayer viscosity on peristaltic
transport of a biofluid, J. Fluid Mech. 97 (1980),
no. 2, 225–237. MR 566650
(81a:76053), http://dx.doi.org/10.1017/S0022112080002534
 21.
J. G. Brasseur, S. Corrsin and N. W. Lu, The influence of a peripheral layer of different viscosity on peristaltic pumping with Newtonian fluid, J. Fluid Mech. 174 (1987), 495519.
 22.
A. R. Rao and S. Usha, Peristaltic transport of two immiscible viscous fluids in a circular tube, J. Fluid Mech. 298 (1995), 271285.
 23.
S. Usha and A. R. Rao, Peristaltic transport of twolayered powerlaw fluids, J. Biomech. Engrg. 119 (1997), 483488.
 24.
J. M. Zahm, D. Pierrot, C. Fuchey, J. Levrier, D. Duval, K. G. Lloyd and E. Puchelle, Comparative rheological profile of rate gastric and duodenal gel mucus, Biorheology 26 (1989), 813822.
 1.
 T. W. Latham, Fluid motions in a peristaltic pump, M.S. Thesis, M.I.T., Cambridge, Massachusetts, 1966.
 2.
 A. H. Shapiro, Pumping and retrograde diffusion in peristaltic waves, Proc. Workshop in Ureteral Reflux in Children (1967), 109126.
 3.
 J. C. Burns and T. Parkes, Peristaltic motion, J. Fluid Mech. 29 (1967), 731743.
 4.
 A. H. Shapiro, M. Y. Jaffrin and S. L. Weinberg, Peristaltic pumping with log wavelength at low Reynolds number, J. Fluid Mech. 37 (1969), 799825.
 5.
 M. Y. Jaffrin, Inertia and streamline curvature on peristaltic pumping, Int. J. Engrg. Sci. 11 (1973), 681699.
 6.
 C. Barton and S. Raynor, Peristaltic flow in tubes, Bull. Math. Biophysics 30 (1968), 663680.
 7.
 C. C. Yin and Y. C. Fung, Peristaltic waves in circular cylindrical tubes, Trans. ASME J. Appl. Mech. 36 (1969), 579587.
 8.
 M. Y. Jaffrin and A. H. Shapiro, Peristaltic pumping, Ann. Rev. Fluid Mech. 3 (1971), 1336.
 9.
 J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated EastWest Press Private Limited, New Delhi, 1985. MR 0806352 (87k:92001)
 10.
 G. W. S. Blair and D. C. Spanner, An Introduction to Amsterdam, Oxford and New York; Elsevier Biorheology Scient. Pub. Co., 1974.
 11.
 P. Chaturani and R. P. Samy, A study of nonNewtonian aspects of blood flow through stenosed arteries and its application in arterial diseases, J. Biorheology 22 (1985), 521531.
 12.
 G. B. Bohme and R. Friedrich, Peristaltic flow of viscoelastic liquids, J. Fluid Mech. 138 (1983), 109122.
 13.
 E. F. E. Shehawey and K. S. Mekheimer, Couplestresses in peristaltic transport of fluids, J. Physics D: Appl. Phys. 27 (1994), 11631170.
 14.
 O. Eytan, A. J. Jaffa and D. Elad, Peristaltic flow in a tapered channel; application to embryo transport within the uterine cavity, J. Medical Engrg. Physics 23 (2001), 473482.
 15.
 J. M. Krishnan and K. R. Rajagopal, Review of the uses and modeling of bitumen from ancient to modern times, Appl. Mech. Reviews 56 (2003), 149214.
 16.
 J. Málek, J. Necas, M. Rokyta and M. R zicka, Weak and Measurevalued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996. MR 1409366 (97g:35002)
 17.
 J. Málek, J. Necas and K. R. Rajagopal, Global existence of solutions for flows of fluids with pressure and shear dependent viscosities, Appl. Math. Letters 15 (2002), 961967. MR 1925921 (2003g:76032)
 18.
 J. Málek, K. R. Rajagopal and M. R zicka, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci. 5 (1995), 789812. MR 1348587 (96i:76002)
 19.
 A. N. Alexandrou, T. M. McGilvreay and G. Burgos, Steady HerschelBulkley fluid flow in threedimensional expansions, J. NonNewtonian Fluid Mech. 100 (2001), 7796.
 20.
 J. B. Shukla, R. S. Parihar, B. R. P. Rao and S. P. Gupta, Effects of peripherallayer viscosity on peristaltic transport of a biofluid, J. Fluid Mech. 97 (1980), 225237. MR 0566650 (81a:76053)
 21.
 J. G. Brasseur, S. Corrsin and N. W. Lu, The influence of a peripheral layer of different viscosity on peristaltic pumping with Newtonian fluid, J. Fluid Mech. 174 (1987), 495519.
 22.
 A. R. Rao and S. Usha, Peristaltic transport of two immiscible viscous fluids in a circular tube, J. Fluid Mech. 298 (1995), 271285.
 23.
 S. Usha and A. R. Rao, Peristaltic transport of twolayered powerlaw fluids, J. Biomech. Engrg. 119 (1997), 483488.
 24.
 J. M. Zahm, D. Pierrot, C. Fuchey, J. Levrier, D. Duval, K. G. Lloyd and E. Puchelle, Comparative rheological profile of rate gastric and duodenal gel mucus, Biorheology 26 (1989), 813822.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2000):
34B15,
92C10
Retrieve articles in all journals
with MSC (2000):
34B15,
92C10
Additional Information
K. Vajravelu
Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816
S. Sreenadh
Affiliation:
Department of Mathematics, Sri Venkateswara University, Tirupati 517502, India
V. Ramesh Babu
Affiliation:
Department of Mathematics, S. V. Arts College, Tirupati, India
DOI:
http://dx.doi.org/10.1090/S0033569X06010209
PII:
S 0033569X(06)010209
Keywords:
Peristaltic transport,
HerschelBulkley fluid,
Newtonian fluid,
volume flow rate
Received by editor(s):
June 21, 2004
Published electronically:
September 11, 2006
Article copyright:
© Copyright 2006 Brown University
