Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Free vibrations of a polar body at elastic range

Authors: Gülay Altay and M. Cengiz Dökmeci
Journal: Quart. Appl. Math. 64 (2006), 711-734
MSC (2000): Primary 74H25, 49R50, 74H45
DOI: https://doi.org/10.1090/S0033-569X-06-01042-3
Published electronically: October 31, 2006
MathSciNet review: 2284467
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to study certain features of the equations governing the time-harmonic free vibrations of a polar body at elastic range. The governing equations of micropolar elasticity are expressed in differential form, and then, the uniqueness of their solutions is investigated. The conditions sufficient for uniqueness are enumerated using the logarithmic convexity argument without any positive-definiteness assumptions of material elasticity. Applying a general principle of physics and modifying it through an involutory transformation, a unified variational principle is obtained that leads to all the governing equations of the free vibrations as its Euler-Lagrange equations. The governing equations are alternatively expressed in terms of the operators related to the kinetic and potential energies of the body. The basic properties of vibrations are studied and a variational principle in Rayleigh's quotient is given. As an application, the high-frequency vibrations of an elastic plate are treated.

References [Enhancements On Off] (What's this?)

  • 1. Cosserat, E. & F. Théorie des corps deformables, Herman et Fils, Paris, 1909.
  • 2. C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik, Band III/3, Springer-Verlag, Berlin, 1965, pp. 1–602. MR 0193816
  • 3. Gauthier, R.D., Experimental investigations on micropolar media, in: O. Brulin, R.K.T. Hsieh (Eds.), Mechanics of micropolar media, World Scientific, Singapore,1982, pp. 395-463.
  • 4. Chen, Y.; Lee, J.D., Determining material constants in micromorphic theory through phonon dispersion relations, Int. J. Eng. Sci. 41(2003) 871-886.
  • 5. Kunin, I.A., Elastic Media with microstructure, vol. 1: One-dimensional models, vol. 2: Three-dimensional models, Springer-Verlag, New York, 1982-1983. MR 0664203 (84d:73008); MR 0710127 (85d:73030)
  • 6. Nowacki, W., Theory of asymmetric elasticity, Pergamon Press, Oxford, 1986. MR 0894254 (88d:73002)
  • 7. A. Cemal Eringen, Microcontinuum field theories. I. Foundations and solids, Springer-Verlag, New York, 1999. MR 1720520
  • 8. Capriz, G., Continua with microstructure, Springer-Verlag, New York, 1989. MR 0985585 (90c:73007)
  • 9. Erofeyev, V.I., Wave processes in solid with microstructure, World Scientific, London, 2003.
  • 10. Pabst, W., Micropolar materials, Ceramics-Silikaty 49(2005), no.3, 170-180.
  • 11. M. Shahinpoor and G. Ahmadi, Uniqueness in elastodynamics of Cosserat and micropolar media, Quart. Appl. Math. 31 (1973/74), 257–261. MR 0411315, https://doi.org/10.1090/S0033-569X-1973-0411315-7
  • 12. Altay, G.; Dökmeci, M. C., Vibrations of 1-D/2-D micropolar elastic continua, ITU and BU, TR 7, November 2001.
  • 13. Reissner, E., A note on variational principles in elasticity, Int. J. Solids Struct. 1 (1965) 93-95.
  • 14. Dökmeci, M.C., Dynamic variational principles for discontinuous elastic fields, J. Ship Res. 23 (1979) 115-122.
  • 15. C. A. Felippa, Parametrized variational principles for micropolar elasticity, Rev. Internac. Métod. Numér. Cálc. Diseñ. Ingr. 8 (1992), no. 3, 267–281 (Spanish, with English and Spanish summaries). MR 1185909
  • 16. P. Steinmann and E. Stein, A unifying treatise of variational principles for two types of micropolar continua, Acta Mech. 121 (1997), no. 1-4, 215–232. MR 1455162, https://doi.org/10.1007/BF01262533
  • 17. Janusz Dyszlewicz, Micropolar theory of elasticity, Lecture Notes in Applied and Computational Mechanics, vol. 15, Springer-Verlag, Berlin, 2004. MR 2058885
  • 18. A. E. H. Love, A treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. Fourth Ed. MR 0010851
  • 19. G. A. Altay and M. C. Dökmeci, Fundamental equations of certain electromagnetic-acoustic discontinuous fields in variational form, Contin. Mech. Thermodyn. 16 (2004), no. 1-2, 53–71. MR 2035527, https://doi.org/10.1007/s00161-003-0141-5
  • 20. R. J. Knops and L. E. Payne, Uniqueness theorems in linear elasticity, Springer-Verlag, New York-Berlin, 1971. Springer Tracts in Natural Philosophy, Vol. 19. MR 0421244
  • 21. G. Aşkar Altay and M. Cengiz Dökmeci, A uniqueness theorem in Biot’s poroelasticity theory, Z. Angew. Math. Phys. 49 (1998), no. 5, 838–846. MR 1652204, https://doi.org/10.1007/s000330050124
  • 22. Altay, G.; Dökmeci, M.C., Fundamental variational equations of discontinuous thermopiezoelectric fields, Int. J. Eng. Sci. 34 (1996) 769-783.
  • 23. C. Truesdell and R. Toupin, The classical field theories, Handbuch der Physik, Bd. III/1, Springer, Berlin, 1960, pp. 226–793; appendix, pp. 794–858. With an appendix on tensor fields by J. L. Ericksen. MR 0118005
  • 24. Lanczos, C., The variational principles of mechanics, Univ. Toronto Press, Toronto, 1964.
  • 25. Dökmeci, M.C., Certain integral and differential types of variational principles in nonlinear piezoelectricity, IEEE Trans. Ultrason. Ferroelec. Freq. Cont. UFFC 35 (1988) 775-787.
  • 26. Yang, J.S.; Batra, R.C., Free vibrations of a piezoelectric body, J. Elasticity 34 (1994) 239-254.
  • 27. Tiersten, H.F., Linear piezoelectric plate vibrations, Plenum Press, New York, 1969.
  • 28. J. S. Yang, Variational formulations for the vibration of a piezoelectric body, Quart. Appl. Math. 53 (1995), no. 1, 95–104. MR 1315450, https://doi.org/10.1090/qam/1315450
  • 29. J. S. Yang and X. Y. Wu, The vibration of an elastic dielectric with piezoelectromagnetism, Quart. Appl. Math. 53 (1995), no. 4, 753–760. MR 1359509, https://doi.org/10.1090/qam/1359509
  • 30. Deresiewicz, H.;Bieniek, M.P.; DiMaggio, F.L. (Eds.), The collected papers of Raymond D. Mindlin, vols. I and II, Springer-Verlag, Berlin, 1989.
  • 31. Altay, G.; Dökmeci, M.C., A polar theory for vibrations of thin elastic shells, Int. J. Solids Struct. 43 (2006) 2578-2601.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 74H25, 49R50, 74H45

Retrieve articles in all journals with MSC (2000): 74H25, 49R50, 74H45

Additional Information

Gülay Altay
Affiliation: Faculty of Engineering, Boḡaziçi University, Bebek, 34342 Istanbul, Turkey
Email: askarg@boun.edu.tr

M. Cengiz Dökmeci
Affiliation: Istanbul Technical University, P.K. 9, Gümüsuyu, 34430 Istanbul, Turkey
Email: cengiz.dokmeci@itu.edu.tr

DOI: https://doi.org/10.1090/S0033-569X-06-01042-3
Received by editor(s): February 17, 2006
Published electronically: October 31, 2006
Additional Notes: The authors acknowledge the financial support in part by their departments and TUBA, and the second author (M.C.D.) is grateful to Prof. Dr. Oral Büyüköztürk (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge) for his kind invitation and support to the three-day workshop on engineering materials on June 9-11, 2004, Cambridge, Mass.
Article copyright: © Copyright 2006 Brown University

American Mathematical Society