Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Estimates for the electric field in the presence of adjacent perfectly conducting spheres

Authors: Habib Ammari, George Dassios, Hyeonbae Kang and Mikyoung Lim
Journal: Quart. Appl. Math. 65 (2007), 339-355
MSC (2000): Primary 35J25; Secondary 73C40
DOI: https://doi.org/10.1090/S0033-569X-07-01034-1
Published electronically: January 16, 2007
MathSciNet review: 2330561
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that, unlike the two-dimensional case, the electric field in the presence of closely adjacent spherical perfect conductors does not blow up even though the separation distance between the conducting inclusions approaches zero.

References [Enhancements On Off] (What's this?)

  • 1. H. Ammari, H. Kang, and M. Lim, Gradient estimates for solutions to the conductivity problem, Math. Ann., 332 (2005), 277-286. MR 2178063 (2006h:78010)
  • 2. H. Ammari, H. Kang, H. Lee, J. Lee, and M. Lim, Optimal bounds on the gradient of solutions to conductivity problems, preprint.
  • 3. I. Babuska, B. Andersson, P. Smith, and K. Levin, Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172 (1999), 27-77. MR 1685902 (2000a:74115)
  • 4. E. Bonnetier and M. Vogelius, An elliptic regurality result for a composite medium with touching fibers of circular cross-section, SIAM J. Math. Anal., 31 (2000), 651-677. MR 1745481 (2002a:35052)
  • 5. B. Budiansky and G.F. Carrier, High shear stresses in stiff fiber composites, J. Appl. Mech., 51 (1984), 733-735.
  • 6. A. Charalambopoulos, G. Dassios, and M. Hadjinicolaou, An analytic solution for low-frequency scattering by two soft spheres, SIAM J. Appl. Math., 58 (1998), 370-386. MR 1617658 (98m:35020)
  • 7. J.B. Keller, Stresses in narrow regions, Trans. ASME J. Appl. Mech., 60 (1993), 1054-1056.
  • 8. J.B. Keller, Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders, J. Appl. Phys., 3 (1963), 991-993.
  • 9. Y.Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material, Comm. Pure Appl. Math., LVI (2003), 892-925. MR 1990481 (2004k:35097)
  • 10. Y.Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151. MR 1770682 (2001m:35083)
  • 11. X. Markenscoff, Stress amplification in vanishing small geometries, Comput. Mech., 19 (1996), 77-83.
  • 12. P. Moon and D.E. Spencer, Field Theory Handbook, 2nd Ed. Springer-Verlag, Berlin, 1988. MR 947546 (89i:00026)
  • 13. H. Yun, Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape, preprint, 2006.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35J25, 73C40

Retrieve articles in all journals with MSC (2000): 35J25, 73C40

Additional Information

Habib Ammari
Affiliation: Centre de Mathématiques Appliquées, CNRS UMR 7641 and Ecole Polytechnique, 91128 Palaiseau Cedex, France
Email: ammari@cmapx.polytechnique.fr

George Dassios
Affiliation: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom
Email: G.Dassios@damtp.cam.ac.uk

Hyeonbae Kang
Affiliation: Department of Mathematical Sciences and RIM, Seoul National University, Seoul 151-747, Korea
Email: hkang@math.snu.ac.kr

Mikyoung Lim
Affiliation: Centre de Mathématiques Appliquées, CNRS UMR 7641 and Ecole Polytechnique, 91128 Palaiseau Cedex, France
Email: mklim@cmapx.polytechnique.fr

DOI: https://doi.org/10.1090/S0033-569X-07-01034-1
Keywords: Electric field, gradient estimates, composite materials
Received by editor(s): April 30, 2006
Published electronically: January 16, 2007
Article copyright: © Copyright 2007 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society