Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures

Authors: E. Romenski, A. D. Resnyansky and E. F. Toro
Journal: Quart. Appl. Math. 65 (2007), 259-279
MSC (2000): Primary 35L65, 76T99
DOI: https://doi.org/10.1090/S0033-569X-07-01051-2
Published electronically: April 19, 2007
MathSciNet review: 2330558
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Governing equations for two-phase compressible flow with different phase pressures and temperatures are presented, the derivation of which is based on the formalism of thermodynamically compatible hyperbolic systems and extended irreversible thermodynamics principles. These equations form a hyperbolic system in conservation-law form. A two-phase isentropic flow model proposed earlier and the hyperbolic model for heat transfer underlie the developed theory of this paper. A set of interfacial exchange processes such as pressure relaxation, interfacial friction, temperature relaxation and phase transition is taken into account by source terms in the balance equations. It is shown that the heat flux relaxation limit of the governing equations can be written in the Baer-Nunziato form, in which the Fourier thermal conductivity diffusion terms for each phase are included.

References [Enhancements On Off] (What's this?)

  • 1. Nikolai Andrianov and Gerald Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys. 195 (2004), no. 2, 434–464. MR 2046106, https://doi.org/10.1016/j.jcp.2003.10.006
  • 2. M. Baer, J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986), 861-889.
  • 3. J. Bdzil, R. Menikoff, S. Son S, et al., Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11 (1999), 378-402.
  • 4. Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787–830. MR 1280989, https://doi.org/10.1002/cpa.3160470602
  • 5. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics. Dover (1984).
  • 6. D.A. Drew, R.T. Lahey, Jr., The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int. J. Multiphase Flow 13 (1987), 113-121.
  • 7. K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 1686–1688. MR 0285799
  • 8. Sergey Gavrilyuk and Richard Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys. 175 (2002), no. 1, 326–360. MR 1877822, https://doi.org/10.1006/jcph.2001.6951
  • 9. S.K. Godunov, An interesting class of quasilinear systems. Soviet Math. Dokl. 2 (1961), 947-949.
  • 10. S. K. Godunov, T. Yu. Mikhaĭlova, and E. I. Romenskiĭ, Systems of thermodynamically consistent conservation laws that are invariant under rotations, Sibirsk. Mat. Zh. 37 (1996), no. 4, 790–806, ii (Russian, with Russian summary); English transl., Siberian Math. J. 37 (1996), no. 4, 690–705. MR 1643366, https://doi.org/10.1007/BF02104662
  • 11. S.K. Godunov, E. Romensky, Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media, in Computational Fluid Dynamics Review 1995. John Wiley & Sons, New York, (1995), 19-31.
  • 12. Sergei K. Godunov and Evgenii I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Academic/Plenum Publishers, New York, 2003. Translated from the 1998 Russian edition by Tamara Rozhkovskaya. MR 1999156
  • 13. Henri Gouin and Sergey Gavrilyuk, Hamilton’s principle and Rankine-Hugoniot conditions for general motions of mixtures, Meccanica 34 (1999), no. 1, 39–47 (English, with English and Italian summaries). MR 1683706, https://doi.org/10.1023/A:1004370127958
  • 14. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1. Pergamon, 3rd Ed. (1994).
  • 15. T.P. Liu, Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108 (1987), 153-175. MR 0872145 (88f:35092)
  • 16. C. A. Lowe, Two-phase shock-tube problems and numerical methods of solution, J. Comput. Phys. 204 (2005), no. 2, 598–632. MR 2131855, https://doi.org/10.1016/j.jcp.2004.10.023
  • 17. A.N. Malyshev, E.I. Romenski, Hyperbolic equations for heat conduction. Global solvability of the Cauchy problem. Siberian Math. J. 27 (1986), 128-134. MR 0873716 (88b:35128)
  • 18. Ingo Müller and Tommaso Ruggeri, Rational extended thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy, vol. 37, Springer-Verlag, New York, 1998. With supplementary chapters by H. Struchtrup and Wolf Weiss. MR 1632151
  • 19. A.D. Resnyansky, A thermodynamically complete model for simulation of one-dimensional multiphase flows. DSTO System Sciences Laboratory, Edinburgh South Australia, Preprint DSTO-TR-1510 (2003).
  • 20. A.D. Resnyansky, G. Katselis, E.I. Romensky, A.E. Wildegger-Gaissmaier, Laboratory study of the blast and fragmentation warheads. 21st Int. Symposium on Balistics, Adelaide, South Australia, 19-24 April, 2004, CD-ROM Proceedings.
  • 21. E. I. Romensky, Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics, Math. Comput. Modelling 28 (1998), no. 10, 115–130. MR 1662561, https://doi.org/10.1016/S0895-7177(98)00159-9
  • 22. E. I. Romensky, Thermodynamics and hyperbolic systems of balance laws in continuum mechanics, Godunov methods (Oxford, 1999) Kluwer/Plenum, New York, 2001, pp. 745–761. MR 1963637
  • 23. E. Romenski, E.F. Toro, Compressible two-phase flow models: two-pressure models and numerical methods. Computational Fluid Dynamics Journal 13 (2004), 403-416.
  • 24. Richard Saurel and Rémi Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), no. 2, 425–467. MR 1684902, https://doi.org/10.1006/jcph.1999.6187
  • 25. D. Serre, Sur le principe variationnel des équations de la mécanique des fluides parfaits, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 6, 739–758 (French, with English and French summaries). MR 1246997, https://doi.org/10.1051/m2an/1993270607391
  • 26. C. Truesdell, Rational thermodynamics, McGraw-Hill Book Co., New York-London-Sydney, 1969. A course of lectures on selected topics; With an appendix on the symmetry of the heat-conduction tensor by C. C. Wang. MR 0366236

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L65, 76T99

Retrieve articles in all journals with MSC (2000): 35L65, 76T99

Additional Information

E. Romenski
Affiliation: Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
Address at time of publication: Cranfield University, Cranfield MK43 0AL, UK
Email: evrom@math.nsc.ru

A. D. Resnyansky
Affiliation: DSTO, P.O. Box 1500, Edinburgh SA 5111, Australia
Email: Anatoly.Resnyansky@dsto.defence.gov.au

E. F. Toro
Affiliation: University of Trento, Trento, 38050, Italy
Email: toro@ing.unitn.it

DOI: https://doi.org/10.1090/S0033-569X-07-01051-2
Received by editor(s): August 29, 2005
Published electronically: April 19, 2007

American Mathematical Society