Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Sensitivity analysis of a parabolic-elliptic problem

Author: Bastian Gebauer
Journal: Quart. Appl. Math. 65 (2007), 591-604
MSC (2000): Primary 35K65, 35B40, 35M10
DOI: https://doi.org/10.1090/S0033-569X-07-01072-4
Published electronically: August 2, 2007
MathSciNet review: 2354889
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative $ L^\infty$-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.

References [Enhancements On Off] (What's this?)

  • 1. H. Ammari, A. Buffa, J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math. 60 (2000), 1805-1823. MR 1761772 (2001g:78003)
  • 2. M. Costabel, Boundary integral operators for the heat equation, Integral Equations Oper. Theory 13 (1990), 488-552. MR 1058085 (91j:35119)
  • 3. M. Costabel, V. J. Ervin, E. P. Stephan, Symmetric coupling of finite elements and boundary elements for a parabolic-elliptic interface problem, Quart. Appl. Math. 48 (1990), 265-279. MR 1052136 (92e:65145)
  • 4. R. Dautray, J. L. Lions, Mathematical analysis and numerical methods for science and technology - volume 2: Functional and variational methods, Springer-Verlag, Berlin, 2000. MR 969367 (89m:00001)
  • 5. R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology - volume 5: Evolution problems I, Springer-Verlag, Berlin, Heidelberg, 2000. MR 1156075 (92k:00006)
  • 6. F. Frühauf, B. Gebauer, O. Scherzer, Detecting interfaces in a parabolic-elliptic problem from surface measurements,, SIAM J. Numer. Anal. 45 (2007), 810-836.
  • 7. J. L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin, 1961. MR 0153974 (27:3935)
  • 8. J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications II, Grundlehren Math. Wiss., vol. 182, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
  • 9. M. Lukaschewitsch, P. Maass, M. Pidcock, Tikhonov regularization for electrical impedance tomography on unbounded domains, Inverse Probl. 19 (2003), 585-610. MR 1984879 (2004f:65079)
  • 10. R. C. MacCamy, M. Suri, A time-dependent interface problem for two-dimensional eddy currents, Quart. Appl. Math. 44 (1987), 675-690. MR 872820 (87m:78007)
  • 11. M. Renardy, R. C. Rogers, An introduction to partial differential equations, Texts Appl. Math., vol. 13, Springer-Verlag, New York, 1993. MR 1211418 (94c:35001)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35K65, 35B40, 35M10

Retrieve articles in all journals with MSC (2000): 35K65, 35B40, 35M10

Additional Information

Bastian Gebauer
Affiliation: Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstr. 69, 4040 Linz, Austria
Email: bastian.gebauer@ricam.oeaw.ac.at

DOI: https://doi.org/10.1090/S0033-569X-07-01072-4
Keywords: Parabolic-elliptic equation, degenerate parabolic equation, asymptotic behavior, sensitivity analysis
Received by editor(s): March 15, 2007
Published electronically: August 2, 2007
Article copyright: © Copyright 2007 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society