Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Viscoelastic fluids in a thin domain


Authors: G. Bayada, L. Chupin and S. Martin
Journal: Quart. Appl. Math. 65 (2007), 625-651
MSC (2000): Primary 76A10, 35B40
DOI: https://doi.org/10.1090/S0033-569X-07-01062-X
Published electronically: October 19, 2007
MathSciNet review: 2370354
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper deals with viscoelastic flows in a thin domain. In particular, we derive and analyse the asymptotic equations of the Stokes-Oldroyd system in thin films (including shear effects). We present a numerical method which solves the corresponding problem and we present some related numerical tests which evidence the effects of the elastic contribution on the flow.


References [Enhancements On Off] (What's this?)

  • 1. A. Assemien, G. Bayada, and M. Chambat, Inertial effects in the asymptotic behavior of a thin film flow, Asymptotic Anal. 9 (1994), no. 3, 177-208. MR 1295293 (95m:76027)
  • 2. G. Bayada and M. Chambat, The transition between the Stokes equations and the Reynolds equation: a mathematical proof, Appl. Math. Optim. 14 (1986), no. 1, 73-93. MR 826853 (87g:76044)
  • 3. G. Bayada, M. Chambat, and S. R. Gamouana, About thin film micropolar asymptotic equations, Quart. Appl. Math. 59 (2001), no. 3, 413-439. MR 1848526 (2003c:76004)
  • 4. F. Boyer, L. Chupin, and P. Fabrie, Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model, Eur. J. Mech. B Fluids 23 (2004), no. 5, 759-780. MR 2077449 (2005c:76011)
  • 5. L. Chupin, Some theoretical results concerning diphasic viscoelastic flows of the Oldroyd kind, Adv. Differential Equations 9 (2004), no. 9-10, 1039-1078. MR 2098065 (2005i:76006)
  • 6. J. P. Denier and P. P. Dabrowski, On the boundary-layer equations for power-law fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), 3143-3158. MR 2098711 (2005f:76005)
  • 7. Y. Fan, H. Yang, and R. I. Tanner, Stress boundary layers in the viscoelastic flow past a cylinder in a channel: limiting solutions, Acta Mech. Sin. 21 (2005), no. 4, 311-321. MR 2202171
  • 8. C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal. 15 (1990), no. 9, 849-869. MR 1077577 (91h:76007)
  • 9. D. D. Joseph, Fluid dynamics of viscoelastic liquids, Springer, New York, 1990. MR 1051193 (91d:76003)
  • 10. R. E. Khayat and R. Pan, Transient free-surface flow of a viscoelastic fluid in a narrow channel, Int. J. Numer. Meth. Fluids 46 (2004), no. 6, 637-661. MR 2088859 (2005e:76006)
  • 11. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969. MR 0259693 (41:4326)
  • 12. J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519. MR 0216344 (35:7178)
  • 13. L. Molinet and R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, NoDEA Nonlinear Differential Equations Appl. 11 (2004), no. 3, 349-359. MR 2090278 (2005d:76002)
  • 14. D. O. Olagunju, Local similarity solutions for boundary layer flow of a FENE-P fluid, Appl.Math. Comput. 173 (2006), no. 1, 593-602. MR 2203412 (2006i:76029)
  • 15. J. G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. London. Ser. A. 200 (1950), 523-541. MR 0035192 (11:703a)
  • 16. J.-M. Sac-Épée and K. Taous, On a wide class of non linear models for non-newtonian fluids with mixed boundary conditions in thin domains, Asymptot. Anal. 44 (2005), no. 1-2, 151-171. MR 2196672 (2006j:76008)
  • 17. F. Talay Akyildiz and H. Bellout, Viscoelastic lubrication with Phan-Thein-Tanner fluid (PTT), ASME J. Tribol. 126 (2004), 288-291.
  • 18. R. I. Tanner and K. Walters, Rheology: an historical perspective, Elsevier, 1998, Rheology series, vol. 7.
  • 19. J. Tichy, Non-Newtonian lubrication with the convective Maxwell model, ASME J. Tribol. 118 (1996), 344-349.
  • 20. R. Zhang and X. K. Li, Non-Newtonian effects on lubricant thin film flows, J. Engrg. Math. 51 (2005), no. 1, 1-13. MR 2132429
  • 21. Y. L. Zhang, O. K. Matar, and R. V. Craster, Surfactant spreading on a thin weakly viscoelastic film, J. Non-Newtonian Fluid Mech. 105 (2002), no. 1, 53-78.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 76A10, 35B40

Retrieve articles in all journals with MSC (2000): 76A10, 35B40


Additional Information

G. Bayada
Affiliation: INSA-Lyon, CNRS UMR 5208 (Institut Camille Jordan) & CNRS UMR 5514 (LAMCOS), Bât. Léonard de Vinci, 21 avenue Jean Capelle, F-69621 Villeurbanne Cedex, France
Email: guy.bayada@insa-lyon.fr

L. Chupin
Affiliation: INSA-Lyon, CNRS UMR 5208 (Institut Camille Jordan), Bât. Léonard de Vinci, 21 avenue Jean Capelle, F-69621 Villeurbanne Cedex, France
Email: laurent.chupin@insa-lyon.fr

S. Martin
Affiliation: INSA-Lyon, CNRS UMR 5208 (Institut Camille Jordan), Bât. Léonard de Vinci, 21 avenue Jean Capelle, F-69621 Villeurbanne Cedex, France
Email: sebastien.martin@insa-lyon.fr

DOI: https://doi.org/10.1090/S0033-569X-07-01062-X
Received by editor(s): February 9, 2006
Published electronically: October 19, 2007
Article copyright: © Copyright 2007 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society