Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Existence and uniqueness result for the problem of viscous flow in a granular material with a void

Authors: Mirela Kohr and G. P. Raja Sekhar
Journal: Quart. Appl. Math. 65 (2007), 683-704
MSC (2000): Primary 76D; Secondary 76M
DOI: https://doi.org/10.1090/S0033-569X-07-01071-1
Published electronically: August 28, 2007
MathSciNet review: 2370356
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to obtain an indirect boundary integral formulation for the three-dimensional viscous flow problem in a granular material with a void. The corresponding existence and uniqueness result of the classical solution to this problem is proved by using the theory of hydrodynamic potentials.

References [Enhancements On Off] (What's this?)

  • 1. G. S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207.
  • 2. V. Botte, H. Power, A second kind integral equation formulation for three-dimensional interior flows at low Reynolds number, Bound. Elem. Commun., 6 (1995), 163-166.
  • 3. F. J. Briceno, H. Power, The completed integral equation approach for the numerical solution of the motion of $ N$ solid particles in the interior of a deformable viscous drop, Eng. Anal. Bound. Elem., 28 (2004), 367-413.
  • 4. A. D. H. Cheng, D. Ouazar, Ground Water Flow, Elsevier, 1993.
  • 5. W. D. Collins, Note on a sphere theorem for the axisymmetric Stokes flow of a viscous fluid, Mathematika 5 (1958), 118–121. MR 0104424, https://doi.org/10.1112/S0025579300001431
  • 6. Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845
  • 7. T. M. Fischer, G. C. Hsiao, and W. L. Wendland, On two-dimensional slow viscous flows past obstacles in a half-plane, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), no. 3-4, 205–215. MR 877902, https://doi.org/10.1017/S0308210500019181
  • 8. J. J. L. Higdon, M. Kojima, On the calculation of Stokes flow past porous particles, Multiphase Flow, 7 (1981), 719-727.
  • 9. I. P. Jones, Low Reynolds number flow past spherical shell, Proc. Camb. Phil. Soc., 73 (1973), 231-238.
  • 10. S. J. Karrila, S. Kim, Integral equations of the second kind for Stokes flow: direct solution for physical variables and removal of inherent accuracy limitations, Chem. Engng. Commun., 82 (1989), 123-161.
  • 11. Mirela Kohr, An indirect boundary integral method for a Stokes flow problem, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 5-7, 487–497. MR 1800567, https://doi.org/10.1016/S0045-7825(00)00240-1
  • 12. Mirela Kohr, An indirect boundary integral method for an oscillatory Stokes flow problem, Int. J. Math. Math. Sci. 47 (2003), 2961-2976. MR 2010743, https://doi.org/10.1155/S016117120321231X
  • 13. M. Kohr, A mixed boundary value problem for the unsteady Stokes system in a bounded domain in $ \mathbb{R}^n$, Engineering Analysis with Boundary Elements, 29 (2005), 936-943.
  • 14. M. Kohr, The Dirichlet problems for the unsteady Stokes system in bounded and exterior domains in $ \mathbb{R}^n$, Mathematische Nachrichten, 280 (2007), 534-559.
  • 15. M. Kohr and I. Pop, Viscous incompressible flow for low Reynolds numbers, Advances in Boundary Elements, vol. 16, WIT Press, Southampton, 2004. MR 2091145
  • 16. Rainer Kress, Linear integral equations, Applied Mathematical Sciences, vol. 82, Springer-Verlag, Berlin, 1989. MR 1007594
  • 17. V. D. Kupradze, T. G. Gegelia, M. O. Basheleĭshvili, and T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, Translated from the second Russian edition, North-Holland Series in Applied Mathematics and Mechanics, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1979. Edited by V. D. Kupradze. MR 530377
  • 18. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. MR 0254401
  • 19. James A. Liggett and Philip L.-F. Liu, The boundary integral equation method for porous media flow, George Allen & Unwin, London-Boston, Mass., 1983. MR 732790
  • 20. Paolo Maremonti, Remigio Russo, and Giulio Starita, On the Stokes equations: the boundary value problem, Advances in fluid dynamics, Quad. Mat., vol. 4, Dept. Math., Seconda Univ. Napoli, Caserta, 1999, pp. 69–140. MR 1770189
  • 21. G. Neale, N. Epstein, W. Nader, Creeping flow relative to permeable spheres, Chem. Eng. Sci., 28 (1973), 1865-1874. (Erratum: 1974, 29, 1352).
  • 22. J. A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid - I, Theoretical development, Int. J. Heat and Mass Transfer, 38 (1995), 2635-2646.
  • 23. J. A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid - II, Comparison with experiment, Int. J. Heat and Mass Transfer, 38 (1995), 2647-2655.
  • 24. Yu Qin and P. N. Kaloni, Creeping flow past a porous spherical shell, Z. Angew. Math. Mech. 73 (1993), no. 2, 77–84 (English, with English and German summaries). MR 1211619, https://doi.org/10.1002/zamm.19930730207
  • 25. B. S. Padmavathi, T. Amaranath, and S. D. Nigam, Stokes flow past a porous sphere using Brinkman’s model, Z. Angew. Math. Phys. 44 (1993), no. 5, 929–939. MR 1241641, https://doi.org/10.1007/BF00942818
  • 26. D. Palanippan, Arbitrary Stokes flow past a porous sphere, Mech. Res. Comm., 20 (1993), 309-317.
  • 27. Henry Power, The completed double layer boundary integral equation method for two-dimensional Stokes flow, IMA J. Appl. Math. 51 (1993), no. 2, 123–145. MR 1244192, https://doi.org/10.1093/imamat/51.2.123
  • 28. Henry Power and Guillermo Miranda, Second kind integral equation formulation of Stokes’ flows past a particle of arbitrary shape, SIAM J. Appl. Math. 47 (1987), no. 4, 689–698. MR 898827, https://doi.org/10.1137/0147047
  • 29. H. Power, L. C. Wrobel, Boundary Integral Methods in Fluid Mechanics, WIT Press, Computational Mechanics Publications, Southampton, 1995.
  • 30. O. Sano, Viscous flow past a cylidrical hole bored inside porous media - with application to measurement of the velocity of subterranean water by the single boring method, Nagare, 2 (1983), 252-259.
  • 31. G. P. Raja Sekhar, B. S. Padmavathi, and T. Amaranath, Complete general solution of the Brinkman equations, Z. Angew. Math. Mech. 77 (1997), no. 7, 555–556. MR 1466445, https://doi.org/10.1002/zamm.19970770716
  • 32. G. P. Raja Sekhar and T. Amaranath, Stokes flow inside a porous spherical shell, Z. Angew. Math. Phys. 51 (2000), no. 3, 481–490. MR 1762703, https://doi.org/10.1007/s000330050009
  • 33. G. P. Raja Sekhar, O. Sano, Viscous flow past a circular/spherical void in porous medium-an application to measurement of the velocity of ground water by single boring method, J. Phys. Soc. Jpn., 69 (2000), 37-42.
  • 34. G. P. Raja Sekhar, O. Sano, Two-dimensional viscous flow past a slightly deformed circular cavity in a porous medium, Fluid. Dyn. Res., 28 (2001), 281-293.
  • 35. G. P. Raja Sekhar, O. Sano, Two-dimensional viscous flow in a granular material with a void of arbitrary shape, Physics of Fluids, 15 (2003), 554-567.
  • 36. G. P. Raja Sekhar, M. K. Partha, P. V. S. N. Murthy, Viscous flow past a spherical void in porous media - Effect of stress jump boundary condition, J. Porous Media, 9 (2006), 745-767.
  • 37. K. B. Ranger, The Stokes drag for asymmetric flow past a spherical cap, Z. Angew. Math. Phys., 24 (1973), 801-809.
  • 38. R. Shail, A note on some asymmetric Stokes flows within a sphere, Quart. J. Mech. Appl. Math. 40 (1987), no. 2, 223–233. MR 894200, https://doi.org/10.1093/qjmam/40.2.223
  • 39. Werner Varnhorn, An explicit potential theory for the Stokes resolvent boundary value problems in three dimensions, Manuscripta Math. 70 (1991), no. 4, 339–361. MR 1092141, https://doi.org/10.1007/BF02568383
  • 40. Werner Varnhorn, The Stokes equations, Mathematical Research, vol. 76, Akademie-Verlag, Berlin, 1994. MR 1282728
  • 41. Werner Varnhorn, The boundary value problems of the Stokes resolvent equations in 𝑛 dimensions, Math. Nachr. 269/270 (2004), 210–230. MR 2074782, https://doi.org/10.1002/mana.200310173
  • 42. Josef Wloka, Funktionalanalysis und Anwendungen, Walter de Gruyter, Berlin-New York, 1971 (German). de Gruyter Lehrbuch. MR 0467224
  • 43. G. K. Youngren and A. Acrivos, Stokes flow past a particle of arbitrary shape: a numerical method of solution, J. Fluid Mech. 69 (1975), 377–403. MR 0398289, https://doi.org/10.1017/S0022112075001486

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 76D, 76M

Retrieve articles in all journals with MSC (2000): 76D, 76M

Additional Information

Mirela Kohr
Affiliation: Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
Email: mkohr@math.ubbcluj.ro

G. P. Raja Sekhar
Affiliation: Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
Email: rajas@maths.iitkgp.ernet.in

DOI: https://doi.org/10.1090/S0033-569X-07-01071-1
Keywords: Stokes equation, Brinkman equation, boundary value problems, fundamental solution, potential theory, boundary integral representations, existence and uniqueness result
Received by editor(s): April 17, 2006
Published electronically: August 28, 2007
Article copyright: © Copyright 2007 Brown University

American Mathematical Society