Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements

Authors: Habib Ammari, Pierre Garapon, Hyeonbae Kang and Hyundae Lee
Journal: Quart. Appl. Math. 66 (2008), 139-175
MSC (2000): Primary 35R30, 35B20; Secondary 74B05, 35Q30
DOI: https://doi.org/10.1090/S0033-569X-07-01089-8
Published electronically: December 7, 2007
MathSciNet review: 2396655
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Magnetic resonance elastography (MRE) is an approach to measuring material properties using external vibration in which the internal displacement measurements are made with magnetic resonance. A variety of simple methods have been designed to recover mechanical properties by inverting the displacement data. Currently, the remaining problems with all of these methods are that, in general, the homogeneous Helmholtz equation is used and therefore it fails at interfaces between tissues of different properties. The purpose of this work is to propose a new method for reconstructing both the shape and the shear modulus of a small anomaly with Lamé parameters different from the background ones using internal displacement measurements.

References [Enhancements On Off] (What's this?)

  • 1. C. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM J. Appl. Math. (2001), 62, 94-106. MR 1857537 (2003a:35195)
  • 2. H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of inhomogeneities of small diameter, SIAM J. Math. Anal., 34 (2003), 1152-1166. MR 2001663 (2004e:35027)
  • 3. H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Volume 1846, Springer-Verlag, Berlin, 2004. MR 2168949 (2006k:35295)
  • 4. H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl., 296 (2004), 190-208. MR 2070502 (2005c:35054)
  • 5. H. Ammari and H. Kang, Reconstruction of elastic inclusions of small volume via dynamic measurements, Appl. Math. Opt., 54 (2006), 223-235. MR 2239535 (2007f:74059)
  • 6. H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Volume 162, Springer-Verlag, New York, 2007.
  • 7. H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, 67 (2002), 97-129. MR 1985444 (2004c:74005)
  • 8. H. Ammari and A. Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl., 82 (2003), 749-842. MR 2005296 (2005a:35262)
  • 9. H. Ammari, M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations, J. Math. Pures Appl., 80 (2001), 769-814. MR 1860816 (2003b:78002)
  • 10. P.M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971. MR 0443383 (56:1753)
  • 11. P.E. Barbone and J.C. Bamber, Quantitative elasticity imaging: what can and cannot be inferred from strain images, Phys. Med. Biol., 47 (2002), 2147-2164.
  • 12. E. Beretta, E. Francini and M. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl., 82 (2003), 1277-1301. MR 2020923 (2004i:35021)
  • 13. Y. Capdeboscq and H. Kang, Improved Hashin-Shtrikman bounds for elastic moment tensors and an application, preprint 2007.
  • 14. Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements,
    Math. Modelling Num. Anal., 37 (2003), 227-240. MR 1991198 (2005c:35067)
  • 15. D.J. Cedio-Fengya, S. Moskow and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, 14 (1998), 553-595. MR 1629995 (99d:78011)
  • 16. T.F. Chan and X.-C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys., 193 (2003), 40-66. MR 2022688 (2004j:65170)
  • 17. Z. Chen and J. Zou, An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems, SIAM J. Cont. Opt., 37 (1999), 892-910. MR 1680814 (2000d:65203)
  • 18. J.F. Douglas and A. Friedman, Coping with complex boundaries, IMA Series on Mathematics and its Applications, Vol. 67, 166-185, Springer, New York, 1995. MR 1340194 (96f:00012)
  • 19. A. Friedman and M.S. Vogelius,
    Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence,
    Arch. Rat. Mech. Anal., 105 (1989), 299-326. MR 973245 (90c:35198)
  • 20. J.F. Greenleaf, M. Fatemi, and M. Insana, Selected methods for imaging elastic properties of biological tissues, Annu. Rev. Biomed. Eng., 5 (2003), 57-78.
  • 21. L. Halpern, Spectral methods in polar coordinates for the Stokes problem. Application to computation in unbounded domains, Math. Comput., 65 (1996), 507-531. MR 1333315 (97e:65100)
  • 22. L. Halpern, A spectral method for the Stokes problem in three-dimensional unbounded domains, Math. Comput., 70 (2001), 1417-1436. MR 1836911 (2002d:76036)
  • 23. K. Ito, K. Kunisch, and Z. Li, Level-set function approach to an inverse interface problem, Inverse Problems, 17 (2001), 1225-1242. MR 1862188 (2002h:35335)
  • 24. L. Ji and J.R. McLaughlin, Recovery of the Lamé parameter $ \mu$ in biological tissues, Inverse Problems, 20 (2004), 1-24. MR 2044603 (2005b:74069)
  • 25. H. Kang, E. Kim, J.-Y. Lee, Identification of elastic inclusions and elastic moment tensors by boundary measurements, Inverse Problems, 19 (2003), 703-724. MR 1984885 (2004c:74025)
  • 26. A. Kozhevnikov, On the first stationary boundary-value problem of elasticity in weighted Sobolev spaces in exterior domains of $ \mathbb{R}^3$, Appl. Math. Opt., 34 (1996), 183-190. MR 1397779 (97d:35217)
  • 27. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English Edition, Gordon and Breach, New York, 1969. MR 0254401 (40:7610)
  • 28. R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites, J. Mech. Phys. Solids, 41 (1993), 809-833. MR 1214019 (94d:73005)
  • 29. A. Manduca, T.E. Oliphant, M.A. Dresner, J.L. Mahowald, S.A. Kruse, E. Amromin, J.P. Felmlee, J.F. Greenleaf, and R.L. Ehman, Magnetic resonance elastography: Non-invasive mapping of tissue elasticity, Medical Image Analysis, 5 (2001), 237-254.
  • 30. J.R. McLaughlin and J.R. Yoon, Unique identifiability of elastic parameters from time-dependent interior displacement measurement, Inverse Problems, 20 (2004), 25-45. MR 2044604 (2005b:74070)
  • 31. R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, and R.L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, 269 (1995), 1854-1857.
  • 32. L.K. Nielsen, X.-C. Tai, S.I. Aanonsenzand, and M. Espedal, A binary level set model for elliptic inverse problems with discontinuous coefficients, Int. J. Numer. Anal. Model., 4 (2007), 74-99. MR 2289734
  • 33. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. MR 965860 (89h:80012)
  • 34. S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J., 48 (1981), 767-778. MR 782576 (86k:35117)
  • 35. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, High-resolution tensor MR elastography for breast tumour detection, Phys. Med. Biol., 45 (2000), 1649-1664.
  • 36. R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography, Mag. Res. Med., 53 (2005), 372-387.
  • 37. R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink, Viscoelastic shear properties of in vivo breast lesions measured by MR elastography, Mag. Res. Imag., 23 (2005), 159-165.
  • 38. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979. MR 603444 (82b:35133)
  • 39. M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities,
    Math. Model. Numer. Anal., 34 (2000), 723-748. MR 1784483 (2001f:78024)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35R30, 35B20, 74B05, 35Q30

Retrieve articles in all journals with MSC (2000): 35R30, 35B20, 74B05, 35Q30

Additional Information

Habib Ammari
Affiliation: Laboratoire Ondes et Acoustique, CNRS & ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
Email: habib.ammari@polytechnique.fr

Pierre Garapon
Affiliation: Laboratoire Ondes et Acoustique, CNRS & ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
Email: Pierre.Garapon@espci.fr

Hyeonbae Kang
Affiliation: School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea
Email: hbkang@snu.ac.kr

Hyundae Lee
Affiliation: School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea
Email: hdlee@math.snu.ac.kr

DOI: https://doi.org/10.1090/S0033-569X-07-01089-8
Keywords: Elastic imaging, reconstruction, quasi-incompressible elasticity, layer potentials, Stokes system, small volume asymptotic expansions, level set method
Received by editor(s): March 26, 2007
Published electronically: December 7, 2007
Additional Notes: The first author was supported in part by the Brain Pool Korea Program at Seoul National University and by the project ANR-06-BLAN-0089.
The second and fourth authors were supported in part by the BK21 Math. division at Seoul National University.
The third author was supported in part by the grant KOSEF R01-2006-000-10002-0.
Article copyright: © Copyright 2007 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society