Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Itô and Stratonovich stochastic partial differential equations: Transition from microscopic to macroscopic equations

Author: Peter M. Kotelenez
Journal: Quart. Appl. Math. 66 (2008), 539-564
MSC (2000): Primary 60H10, 60H05, 60H30, 60F17
DOI: https://doi.org/10.1090/S0033-569X-08-01102-6
Published electronically: July 2, 2008
MathSciNet review: 2445528
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


We review the derivation of stochastic ordinary and quasi-linear stochastic partial differential equations (SODE's and SPDE's) from systems of microscopic deterministic equations in space dimension $ d\geq 2$ as well as the macroscopic limits of the SPDE's. The macroscopic limits are quasi-linear (deterministic) PDE's. Both noncoercive and coercive SPDE's, driven by Itô differentials with respect to correlated Brownian motions, are considered. For the solutions of semi-linear noncoercive SPDE's with smooth and homogeneous diffusion kernels we show that these solutions can be obtained as solutions of first-order SPDE's, driven by Stratonovich differentials and their macroscopic limit, and are solutions of a class of semi-linear second-order parabolic PDE's. Further, the space-time covariance structure of correlated Brownian motions is described and for space dimension $ d\geq 2$ the long-time behavior of the separation of two uncorrelated Brownian motions is shown to be similar to the independent case.

References [Enhancements On Off] (What's this?)

  • 1. Borkar, V.S., Evolution of Interacting Particles in a Brownian Medium. Stochastics 14 (1984), 33-79. MR 774584 (86f:60073)
  • 2. Dawson, D.A., Vaillancourt, J., and Wang, H., Stochastic Partial Differential Equations for a Class of Interacting Measure-valued Diffusions. Ann. Inst Henri Poincaré, Probabilités et Statistiques 36 (2000), no. 2, 167-180. MR 1751657 (2002d:60053)
  • 3. Dorogovtsev, A., One Brownian Stochastic Flow. Theory of Stochastic Processes, 10 (2004), no. 3-4, 21-25. MR 2329772
  • 4. Dürr, D., Goldstein, S. and Lebowitz, J.L., A Mechanical Model of Brownian Motion. Commun. Math. Phys. 78 (1981), 507-530. MR 606461 (83d:60109)
  • 5. Dynkin, E.B., Markov processes. Vol. I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965.
  • 6. Einstein, A., Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann.d.Phys. 17 (quoted from the English translation: (1956) Investigations on the Theory of Brownian Movement, Dover Publications, Inc., New York. MR 0077443 (17:1035g)
  • 7. Ethier, S.N. and Kurtz, T.G., Markov Processes. Characterization and Convergence. John Wiley & Sons, New York - Toronto, 1986.MR 838085 (88a:60130)
  • 8. Friedman, A., Stochastic differential equations and applications. Vol. 2, Academic Press. New York-San Francisco-London, 1976. MR 0494491 (58:13350b)
  • 9. Gärtner, J.: On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 (1988), 197-248. MR 968996 (90a:60184)
  • 10. Gel$ '$fand, I.M. and Vilenkin, N. Ya., Generalized Functions. Vol. 4. Academic Press. New York - London, 1964. MR 0435834 (55:8786d)
  • 11. Gikhman, I.I. and Skorokhod, A.V., Stochastic differential equations. Naukova Dumka, Kiev (in Russian - English Translation (1972): Stochastic Differential Equations. Springer-Verlag, Berlin).
  • 12. Goncharuk, N. and Kotelenez, P., Fractional Step Method for Stochastic Evolution Equations. Stoch. Proc. Appl. 73 (1998), 1-45. MR 1603842 (99b:60090)
  • 13. Haken, H., Advanced Synergetics. Springer-Verlag, Berlin-Heidelberg, New York, Tokyo, 1983. MR 707096 (86h:00020)
  • 14. Ikeda, N. and Watanabe, S., Stochastic differential equations and diffusion processes. North-Holland Publishing Company. Amsterdam - New York, 1989. MR 1011252 (90m:60069)
  • 15. Jetschke, G., On the Equivalence of Different Approaches to Stochastic Partial Differential Equations. Math. Nachr. 128 (1986), 315-329. MR 855965 (87k:60156)
  • 16. Kampen, N.G. van, Stochastic Processes in Physics and Chemistry. North-Holland Publ. Co., Amsterdam, New York, 1983.
  • 17. Kotelenez, P., A Stochastic Navier-Stokes Equation for the Vorticity of a Two-dimensional Fluid. Ann. Applied Probab. 5 (1995), No. 4, 1126-1160. MR 1384369 (97f:60116)
  • 18. Kotelenez, P., A Class of Quasilinear Stochastic Partial Differential Equations of McKean-Vlasov Type with Mass Conservation. Probab. Theory Relat. Fields. 102 (1995), 159-188 MR 1337250 (96k:60157)
  • 19. Kotelenez, P., From Discrete Deterministic Dynamics to Stochastic Kinematics - A Derivation of Brownian Motions. Stochastics and Dynamics 5 (2005), Number 3, 343-384. MR 2166985
  • 20. Kotelenez, P., Correlated Brownian Motions as an Approximation to Deterministic Mean-Field Dynamics. Ukrainian Math. J. 57 (2005), no. 6, 757-769 MR 2208453 (2006k:82125)
  • 21. Kotelenez, P., Stochastic Ordinary and Stochastic Partial Differential Equations - Transition from Microscopic to Macroscopic Equations. Springer-Verlag, Berlin-Heidelberg-New York, 2007.
  • 22. Kotelenez, P., Leitman M. and Mann, J. Adin Jr., On the Depletion Effect in Colloids. Preprint.
  • 23. Kotelenez, P. and Kurtz, T.G., Macroscopic Limit for Stochastic Partial Differential Equations of McKean-Vlasov Type. (Preprint)
  • 24. Krylov, N.V., Private Communication.
  • 25. Krylov, N.V. and Rozovsky, B.L., On stochastic evolution equations. Itogi Nauki i tehniki, VINITI, 71-146, 1979 (in Russian).
  • 26. Kunita, H., Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1990. MR 1472487 (98e:60096)
  • 27. Kurtz, T.G. and Xiong, Jie, Particle Representations for a Class of Nonlinear SPDEs. Stochastic Process Appl. 83 (1999), 103-126. MR 1705602 (2000g:60108)
  • 28. Lifshits, E.M. and Pitayevskii, L.P., Physical Kinetics. Theoretical Physics X. Nauka, Moscow, 1979 (in Russian).
  • 29. Metivier, M. and Pellaumail, J., Stochastic Integration. Adademic Press, New York, 1980.
  • 30. Oelschläger, K., A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes. Ann. Probab. 12 (1984), 458-479.
  • 31. Pardoux, E., Stochastic Partial Differential Equations and Filtering of Diffusion Processes. Stochastics Vol. 3, 1979, 127-167. MR 553909 (81b:60059)
  • 32. Rozovsky, B.L., Stochastic Evolution Systems. Nauka, Moscow (in Russian - English Translation (1990), Kluwer Academic, Dordrecht-Boston). MR 1135324 (92k:60136)
  • 33. Sinai, Ya. G. and Soloveichik, M.R., One-Dimensional Classical Massive Particle in the Ideal Gas. Commun. Math. Phys. 104 (1986), 423-443. MR 840745 (88h:82014)
  • 34. Szász, D. and Tóth, B., Towards a Unified Dynamical Theory of the Brownian Particle in an Ideal Gas. Commun. Math. Phys. 111 (1986), 41-62. MR 896758 (89d:82021)
  • 35. Truesdell, C. and Noll, W., Encyclopedia of Physics - Volume III/3 - The Nonlinear Field Theories of Mechanics. Springer-Verlag, Berlin-Heidelberg-New York, 1965. MR 1215940 (94c:73002)
  • 36. Vaillancourt, J., On the Existence of Random McKean-Vlasov limits for Triangular Arrays of Exchangeable Diffusions. Stoch. Anal. Appl. 6(4) (1988), 431-446. MR 964251 (90a:60142)
  • 37. Walsh, J.B., An Introduction to Stochastic Partial Differential Equations. Ecole d'Eté de Probabilité de Saint Fleur XIV. Lecture Notes in Math. 1180. Springer, Berlin, 1986, pp. 265-439. MR 876085 (88a:60114)
  • 38. Wong, E. and Zakai, M., On the Relation between Ordinary and Stochastic Differential Equations, Int. J. Eng. Sci. 3 (1965), 213-229. MR 0183023 (32:505)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 60H10, 60H05, 60H30, 60F17

Retrieve articles in all journals with MSC (2000): 60H10, 60H05, 60H30, 60F17

Additional Information

Peter M. Kotelenez
Affiliation: Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
Email: pxk4@po.cwru.edu

DOI: https://doi.org/10.1090/S0033-569X-08-01102-6
Received by editor(s): May 15, 2007
Published electronically: July 2, 2008
Article copyright: © Copyright 2008 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society