Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Transport of heat and mass in a fluid with vanishing mobility

Author: Catherine Choquet
Journal: Quart. Appl. Math. 66 (2008), 771-779
MSC (2000): Primary 35K60, 35K65, 35B40, 76S05, 35K57.
DOI: https://doi.org/10.1090/S0033-569X-08-01085-4
Published electronically: September 26, 2008
MathSciNet review: 2465144
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a model describing the compressible displacement of a mixture in a porous medium. The transport of heat and mass is described by a nonlinear, fully coupled and degenerate parabolic system. Using a series of compensated compactness and convexity arguments, we prove the existence of relevant weak solutions.

References [Enhancements On Off] (What's this?)

  • 1. Y. Amirat, K. Hamdache, and A. Ziani.
    Mathematical analysis for compressible miscible displacement models in porous media.
    Math. Models Methods Appl. Sci., 6(6):729-747, 1996. MR 1404826 (97g:76086)
  • 2. Y. Amirat and A. Ziani.
    Asymptotic behavior of the solutions of an elliptic-parabolic system arising in flow in porous media.
    Z. Anal. Andwendungen, 23(2):335-351, 2004. MR 2085294 (2007d:35215)
  • 3. J. Bear.
    Dynamics of Fluids in Porous Media.
    American Elsevier, 1972.
  • 4. C. Choquet.
    Existence result for a radionuclide transport model with an unbounded viscosity.
    J. Math. Fluid Mech., 6(4):365-388, 2004. MR 2101887 (2005m:35142)
  • 5. G. de Marsily.
    Hydrogéologie quantitative.
    Masson, 1981.
  • 6. M. Kaviany.
    Principles of heat transfer in porous media.
    Springer, 1999.
  • 7. A.V. Kazhikhov.
    Recent developments in the global theory of two-dimensional compressible Navier-Stokes equations.
    Seminar on Mathematical Sciences, Keio University, 25, 1998. MR 1600212 (98k:35150)
  • 8. F. Murat.
    Compacité par compensation.
    Ann. Scuola Norm. Sup. Pisa, 5:489-507, 1978. MR 506997 (80h:46043a)
  • 9. M. Reeves and R.M. Cranwell.
    User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).
    Release 4.81. Sandia Report Nureg/Cr-2324, SAND81-2516, GF, Sandia National Laboratories, Albuquerque, 1981.
  • 10. J. Simon.
    Compact sets in the space $ {L}^p(0,{T};{B})$.
    Ann. Math. Pura Appl., IV:65-96, 1987. MR 916688 (89c:46055)
  • 11. L. Tartar.
    Compensated compactness and applications to P.D.E.
    In R.J. Knops, editor, Non Linear Analysis and Mechanics, Heriot-Watt Symposium, Research Notes in Math., volume 4 (39), pages 136-212. Pitman Press, 1979. MR 584398 (81m:35014)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35K60, 35K65, 35B40, 76S05, 35K57.

Retrieve articles in all journals with MSC (2000): 35K60, 35K65, 35B40, 76S05, 35K57.

Additional Information

Catherine Choquet
Affiliation: Université P. Cézanne, FST, LATP-CNRS UMR 6632, Case Cour A, 13397 Marseille Cedex 20, France
Email: c.choquet@univ-cezanne.fr

DOI: https://doi.org/10.1090/S0033-569X-08-01085-4
Keywords: Nonlinear degenerate parabolic system; compensated compactness; miscible compressible displacement; porous media.
Received by editor(s): July 16, 2007
Published electronically: September 26, 2008
Article copyright: © Copyright 2008 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society