Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Higher derivatives and the inverse derivative of a tensor-valued function of a tensor


Author: Andrew N. Norris
Journal: Quart. Appl. Math. 66 (2008), 725-741
MSC (2000): Primary 15-XX, 15A24
DOI: https://doi.org/10.1090/S0033-569X-08-01108-2
Published electronically: September 11, 2008
MathSciNet review: 2465142
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ n^{th}$ derivative of a tensor-valued function of a tensor is defined by a finite number of coefficients each with closed form expression.


References [Enhancements On Off] (What's this?)

  • 1. D. E. Carlson and A. Hoger, The derivative of a tensor-valued function of a tensor, Q. Appl. Math. 44 (1986), 409-423. MR 860894 (87j:53024)
  • 2. P. Chadwick and R. W. Ogden, A theorem of tensor calculus and its application to isotropic elasticity, Arch. Rat. Mech. Anal. 44 (1971), no. 1, 54-68. MR 0334656 (48:12975)
  • 3. Y-C. Chen and G-S. Dui, The derivative of isotropic tensor functions, elastic moduli and stress rate: I. Eigenvalue formulation, Math. Mech. Solids 9 (2004), no. 5, 493-511. MR 2094142 (2005e:74001)
  • 4. W. F. Donoghue, Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, New York, 1974. MR 0486556 (58:6279)
  • 5. Guan-Suo Dui, Some basis-free formulae for the time rate and conjugate stress of logarithmic strain tensor, J. Elasticity 83 (2006), no. 2, 113-151. MR 2242836
  • 6. R. Hill, Aspects of invariance in solid mechanics, Adv. Appl. Mech. 18 (1978), 1-75. MR 564892 (84f:73002)
  • 7. M. Itskov and N. Aksel, A closed-form representation for the derivative of non-symmetric tensor power series, Int. J. Solids Struct. 39 (2002), no. 24, 5963-5978. MR 2123747 (2005i:74003)
  • 8. C. S. Jog, Derivatives of the stretch, rotation and exponential tensors in n-dimensional vector spaces, J. Elasticity 82 (2006), no. 2, 175-192. MR 2230236 (2006m:74015)
  • 9. O. Kintzel and Y. Bascedilar, Fourth-order tensors - tensor differentiation with applications to continuum mechanics. I: Classical tensor analysis, Z. Angew. Math. Mech. 86 (2006), no. 4, 291-311. MR 2216494 (2007d:53018)
  • 10. R. W. Ogden, Non-linear elastic deformations, Ellis Horwood, 1984.
  • 11. L. Rosati, A novel approach to the solution of the tensor equation AX+XA=H, Int. J. Solids Struct. 37 (2000), no. 25, 3457-3477. MR 1751369 (2000m:74006)
  • 12. M. Scheidler, Time rates of generalized strain tensors. Part I: Component formulas, Mech. Materials 11 (1991), 199-210.
  • 13. -, The tensor equation $ {AX+XA=F(A,H)}$, with applications to kinematics of continua, J. Elasticity 36 (1994), no. 2, 117-153. MR 1314315 (96e:73019)
  • 14. H. Xiao, O. T. Bruhns, and A. Meyers, Strain rates and material spins, J. Elasticity 52 (1998), no. 1, 1-41. MR 1673216 (99m:73021)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 15-XX, 15A24

Retrieve articles in all journals with MSC (2000): 15-XX, 15A24


Additional Information

Andrew N. Norris
Affiliation: Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854-8058
Email: norris@rutgers.edu

DOI: https://doi.org/10.1090/S0033-569X-08-01108-2
Received by editor(s): June 28, 2007
Published electronically: September 11, 2008
Article copyright: © Copyright 2008 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society