Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Asymptotic behavior of a nonisothermal Ginzburg-Landau model

Authors: Maurizio Grasselli, Hao Wu and Songmu Zheng
Journal: Quart. Appl. Math. 66 (2008), 743-770
MSC (2000): Primary 35K55; Secondary 35B40, 35B41, 80A22, 82D55
DOI: https://doi.org/10.1090/S0033-569X-08-01115-9
Published electronically: October 3, 2008
MathSciNet review: 2465143
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze a system of nonlinear parabolic equations which describes the evolution of an order parameter $ f$ and the relative temperature $ v$ in a superconducting material occupying a bounded domain $ \Omega\subset {\mathbb{R}}^n$, $ n\leq 3$. Here the dependent variable $ f$ is subject to the homogeneous Neumann boundary condition, while $ v$ is equal to a time-dependent Dirichlet datum $ \tilde u$ on the boundary. Therefore, the corresponding dynamical system is nonautonomous. Our main goal is to analyze the asymptotic behavior of its solutions. We first show that the system has a bounded absorbing set and a global attractor which are uniform with respect to a sufficiently general class of $ \tilde u$. Then, we give sufficient conditions on $ \tilde u$ which ensure the convergence of a given trajectory to a single stationary state and we estimate the convergence rate. Finally, we demonstrate the existence of an exponential attractor of finite fractal dimension for quasi-periodic or stabilizing boundary data $ \tilde u$.

References [Enhancements On Off] (What's this?)

  • 1. S. Aizicovici, E. Feireisl, F. Issard-Roch, Long time convergence of solutions to a phase-field system, Math. Methods Appl. Sci. 24 (2001), 277-287. MR 1818896 (2002b:35081)
  • 2. P.W. Bates, S. Zheng, Inertial manifolds and inertial sets for the phase-field equations, J. Dynamics Differential Equations 4 (1992), 375-397. MR 1160925 (93h:35187)
  • 3. V. Berti, M. Fabrizio, A non-isothermal Ginzburg-Landau model in superconductivity: existence, uniqueness and asymptotic behavior, Nonlinear Anal. 66 (2007), 2565-2578. MR 2312606 (2008a:82098)
  • 4. D. Brochet, X. Chen, D. Hilhorst, Finite dimensional exponential attractor for the phase-field model, Appl. Anal. 49 (1993), 197-212. MR 1289743 (95g:35097)
  • 5. D. Brochet, D. Hilhorst, Universal attractor and inertial sets for the phase-field model, Appl. Math. Lett. 4 (1991), 59-62. MR 1136614 (92g:35102)
  • 6. M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Appl. Math. Sci. 121, Springer, New York, 1996. MR 1411908 (97g:35127)
  • 7. G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal. 92 (1986), 205-245. MR 816623 (87c:80011)
  • 8. V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ. 49, AMS, Providence, RI, 2002. MR 1868930 (2003f:37001c)
  • 9. L. Cherfils, A. Miranville, Some remarks on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 16 (2007), 107-129. MR 2337372
  • 10. L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., to appear.
  • 11. R. Chill, M.A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear Anal. 53 (2003), 1017-1039. MR 1978032 (2004d:34103)
  • 12. M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $ {\mathbb{R}}^{3}$, C. R. Math. Acad. Sci. Paris 330 (2000), 713-718. MR 1763916 (2001c:35039)
  • 13. M. Efendiev, A. Miranville, S. Zelik, Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system, Math. Nachr. 248/249 (2003), 72-96. MR 1950716 (2003i:37082)
  • 14. M. Efendiev, S. Zelik, A. Miranville, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 703-730. MR 2173336 (2007a:37098)
  • 15. C.M. Elliott, S. Zheng, Global existence and stability of solutions to the phase-field equations, in ``Free boundary problems'', Internat. Ser. Numer. Math. 95, 46-58, Birkhäuser Verlag, Basel, 1990. MR 1111021 (92g:35214)
  • 16. P. Fabrie, A. Miranville, Exponential attractors for nonautonomous first-order evolution equations, Discrete Contin. Dynam. Syst. 4 (1998), 225-240. MR 1617294 (99c:34132)
  • 17. M.Fabrizio, Ginzburg-Landau equations and first and second order phase transitions, Internat. J. Engrg. Sci. 44 (2006), 529-539. MR 2234088 (2007f:82118)
  • 18. G.J. Fix, Phase field models for free boundary problems, in ``Free boundary problems: theory and applications, Vol. II''(A. Fasano and M. Primicerio, eds.), Pitman Res. Notes Math. Ser. 79, 580-589, Longman, London, 1983.
  • 19. C.G. Gal, M. Grasselli, The nonisothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dynam. Syst., 22 (2008), 1009-1040.
  • 20. S. Gatti, A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in `` Differential Equations Inverse and Direct Problems''(A. Favini and A. Lorenzi, eds.), Ser. Lect. Notes Pure Appl. Math. 251, 149-170, Chapman & Hall/CRC, Boca Raton, 2006. MR 2275977 (2007g:35087)
  • 21. C. Giorgi, M. Grasselli, V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J. 48 (1999), 1395-1445. MR 1757078 (2001h:37160)
  • 22. M. Grasselli, V. Pata, Asymptotic behavior of a parabolic-hyperbolic system, Commun. Pure Appl. Anal. 3 (2004), 849-881. MR 2106302 (2005h:35150)
  • 23. M. Grasselli, H. Petzeltová, G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwendungen 25 (2006), 51-72. MR 2216881 (2007b:35159)
  • 24. M. Grasselli, H. Petzeltová, G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system, Commun. Pure Appl. Anal. 5 (2006), 827-838. MR 2246010 (2007g:35088)
  • 25. J.K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr. 25, Amer. Math. Soc., Providence, 1988. MR 941371 (89g:58059)
  • 26. A. Haraux, Systèmes dynamiques dissipatifs et applications, Recherches en Mathématiques Appliquées 17, Masson, Paris, 1991. MR 1084372 (92b:35002)
  • 27. A. Haraux, M.A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations 9 (1999), 95-124. MR 1714129 (2000h:35110)
  • 28. S.-Z. Huang, P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal. 46 (2001), 675-698. MR 1857152 (2002f:35125)
  • 29. M.A. Jendoubi, A simple unified approach to some convergence theorem of L. Simon, J. Funct. Anal. 153 (1998), 187-202. MR 1609269 (99c:35101)
  • 30. A. Jiménez-Casas, A. Rodrıguez-Bernal, Asymptotic behaviour for a phase field model in higher order Sobolev spaces, Rev. Mat. Complut. 15 (2002), 213-248. MR 1915223 (2003f:35148)
  • 31. V.K. Kalantarov, On the minimal global attractor of a system of phase field equations (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 188 (1991), Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 22, 70-86, 186 [translation in J. Math. Sci. 70 (1994), no. 3, 1767-1777]. MR 1111469 (93f:35121)
  • 32. O.V. Kapustyan, An attractor of a semiflow generated by a system of phase-field equations without uniqueness of the solution (Ukrainian), Ukraın. Mat. Zh. 51 (1999), 1006-1009 [Translation in Ukrainian Math. J. 51 (1999), no. 7, 1135-1139 (2000)]. MR 1727706 (2001b:37113)
  • 33. Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 167-185. MR 1378839 (97a:35115)
  • 34. S. Ma, C. Zhong, The attractor for weakly damped non-autonomous hyperbolic equations with a new class of external forces, Discrete Contin. Dynam. Syst. 18 (2007), 53-70. MR 2276486
  • 35. G.B. McFadden, Phase-field models of solidification, Contemp. Math. 306 (2002), 107-145. MR 1940624 (2003k:80004)
  • 36. A. Miranville, Exponential attrators for nonautonomous evolution equations, Appl. Math. Lett. 11 (1998), 19-22. MR 1609661
  • 37. N. Sato, T. Aiki, Phase field equations with constraints under nonlinear dynamic boundary conditions, Commun. Appl. Anal. 5 (2001), 215-234. MR 1844192 (2002f:35131)
  • 38. G. Schimperna, Abstract approach to evolution equations of phase field type and applications, J. Differential Equations 164 (2000), 395-430. MR 1765571 (2001h:35110)
  • 39. H. Wu, M. Grasselli, S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions, Math. Models Methods Appl. Sci. 17 (2007) 125-153. MR 2290411
  • 40. Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal. 4 (2005), 683-693. MR 2167193 (2006i:35142)
  • 41. S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 133, Chapman & Hall/CRC, Boca Raton, Florida, 2004. MR 2088362 (2006a:35001)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35K55, 35B40, 35B41, 80A22, 82D55

Retrieve articles in all journals with MSC (2000): 35K55, 35B40, 35B41, 80A22, 82D55

Additional Information

Maurizio Grasselli
Affiliation: Dipartimento di Matematica, Politecnico di Milano, Milano 20133, Italy
Email: maurizio.grasselli@polimi.it

Hao Wu
Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, China
Email: haowufd@yahoo.com

Songmu Zheng
Affiliation: Institute of Mathematics, Fudan University, Shanghai 200433, China
Email: songmuzheng@yahoo.com

DOI: https://doi.org/10.1090/S0033-569X-08-01115-9
Keywords: Ginzburg-Landau systems, phase-field equations, nonautonomous dynamical systems, global attractors, convergence to equilibria, {\L }ojasiewicz-Simon inequality, exponential attractors.
Received by editor(s): July 15, 2007
Published electronically: October 3, 2008
Additional Notes: Dr. Songmu Zheng is the corresponding author.
Article copyright: © Copyright 2008 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society