ERRATUM TO “THIN ELASTIC FILMS:
THE IMPACT OF HIGHER ORDER PERTURBATIONS”

BY

IRENE FONSECA (Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213),

GILLES FRANC Forever (L.P.M.T.M., Université Paris-Nord, 93430 Villetaneuse, France),

AND

GIOVANNI LEONI (Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

1. Introduction. In the paper [2] the main objective was to identify

\[E^\gamma(u, b; A) := \inf \left\{ \liminf_{\varepsilon \to 0^+} E^\varepsilon(u_\varepsilon; A) : \right. \]

\[u_\varepsilon \in W^{2,2}(\Omega; \mathbb{R}^3), \]

\[u_\varepsilon \rightharpoonup u \text{ in } W^{1,q}(\Omega; \mathbb{R}^3), \quad \frac{1}{\varepsilon} D_3 u_\varepsilon \to b \text{ in } L^q(\Omega; \mathbb{R}^3) \}

where

\[E^\varepsilon(u; A) := \int_{A \times I} W \left(D_p u \left[\frac{1}{\varepsilon} D_3 u \right] \right) dx \]

\[+ \varepsilon^\gamma \int_{A \times I} \left(|D_p^2 u|^2 + \frac{1}{\varepsilon^2} |D_p^4 u|^2 + \frac{1}{\varepsilon^4} |D^3 u|^2 \right) dx \]

if \(u \in W^{2,2}(\Omega; \mathbb{R}^3) \), and \(E^\varepsilon(u; A) := \infty \) otherwise. Here \(q > 1, \Omega = \omega \times I, A(\omega) \) is the family of open subsets of \(\omega \), and \(W \) satisfies the condition

Received October 18, 2007.
2000 Mathematics Subject Classification. Primary 49J45, 74K15.
Key words and phrases. Dimension reduction, \(\Gamma \)-convergence, thin films, relaxation, interfacial energy.
The research of I. Fonseca was partially supported by the National Science Foundation under Grants No. DMS-0103798, DMS-0401763, and by the Center for Nonlinear Analysis under the US National Science Foundation DMS Grants 9803791 & 0405343.
The research of G. Leoni was partially funded by the US National Science Foundation DMS Grant 0405423, and by the Center for Nonlinear Analysis under the US National Science Foundation DMS Grants 9803791 & 0405343.
E-mail address: fonseca@andrew.cmu.edu
E-mail address: francfor@lpmtm.univ-paris13.fr
E-mail address: giovanni@andrew.cmu.edu
©2008 Brown University
Reverts to public domain 28 years from publication

781
\((H_1)'\) \(W : \mathbb{R}^{3 \times 3} \to [0, \infty)\) is continuous and there exists \(C > 0\) such that
\[
\frac{1}{C} |F|^q - C \leq W(F) \leq C (1 + |F|^q)
\]
for all \(F \in \mathbb{R}^{3 \times 3}\).

We recall that
\[
V^\gamma := \{(u, b) \in W^{1, q}(\Omega; \mathbb{R}^3) \times L^q(\Omega; \mathbb{R}^3) : D_3 u = 0 \ \text{a.e. in} \ \Omega, \quad D_3 b = 0 \ \text{a.e. in} \ \Omega \ \text{if} \ \gamma < 2, \ D_3 b \in L^2(\Omega; \mathbb{R}^3) \ \text{if} \ \gamma = 2\}
\]
and for \((u, b) \in V^\gamma\) and \(A \in \mathcal{A}(\omega)\),
\[
H^\gamma(u, b, A) := \inf \left\{ \liminf_{\varepsilon \to 0^+} \int_{A \times I} W(D_\varepsilon u_\varepsilon(x) | b_\varepsilon(x)) \, dx : \{u_\varepsilon\} \subset W^{1, q}(\Omega; \mathbb{R}^3), \ \{b_\varepsilon\} \subset L^q(\Omega; \mathbb{R}^3), \ u_\varepsilon \rightharpoonup u \ \text{in} \ W^{1, q}(\Omega; \mathbb{R}^3), \ b_\varepsilon \to b \ \text{in} \ L^q(\Omega; \mathbb{R}^3) \right\}
\]
if \(\gamma \neq 2\), and
\[
H^2(u, b, A) := \inf \left\{ \liminf_{\varepsilon \to 0^+} \int_{A \times I} \left[W(D_\varepsilon u_\varepsilon(x) | b_\varepsilon(x)) + |D_3 b_\varepsilon(x)|^2 \right] \, dx : \{u_\varepsilon\} \subset W^{1, q}(\Omega; \mathbb{R}^3), \ \{b_\varepsilon\} \subset L^q(\Omega; \mathbb{R}^3) \ \text{with} \ D_3 b_\varepsilon \in L^2(\Omega; \mathbb{R}^3), \ u_\varepsilon \rightharpoonup u \ \text{in} \ W^{1, q}(\Omega; \mathbb{R}^3), \ b_\varepsilon \to b \ \text{in} \ L^q(\Omega; \mathbb{R}^3) \right\}
\]
In this erratum we slightly change notation and denote \(H^\gamma\) and \(H^2\) by \(H^\gamma_{3,3}\) and \(H^2_{3,3}\), respectively. We also introduce \(H^2_{2,3}\) and \(H^2_{3,3}\), which we define analogously except for the fact that the approximating sequences \(\{u_\varepsilon\}\) belong to \(W^{1, q}(\omega; \mathbb{R}^3)\).

The proof of Theorem 3.1 in [2] has an error in the upper bound. To date this upper bound can only be established if \(\gamma < 2\) or if \(D_3 b = 0 \ \text{a.e. in} \ \Omega\). Therefore, Theorem 3.1 in [2] should be replaced by

Theorem A (New Theorem 3.1). Assume that condition \((H_1)'\) is satisfied. Then,
\[
H^\gamma_{3,3}(u, b, A) \leq E^\gamma_{3,3}(u, b, A) \leq H^\gamma_{2,3}(u, b, A)
\]
for all \((u, b) \in V^\gamma\) and \(A \in \mathcal{A}(\omega)\). If \(\gamma < 2\) or \(\gamma \geq 2\) and \(D_3 b = 0 \ \text{a.e. in} \ \Omega\), then
\[
E^\gamma_{3,3}(u, b, A) = H^\gamma_{3,3}(u, b, A) = H^\gamma_{2,3}(u, b, A) = H^\gamma_{2,2}(u, b, A)
\]
\[
= \int_A (Q_2 \times C_2) \left| W \right| (D_p u(x_\alpha) | b(x_\alpha)) \, dx_\alpha.
\]

The lower bound in the original Theorem 3.1 in [2] is correct. The mistake in the proof of Theorem 3.1 was in trying to show that the upper bound is still \(H^\gamma_{3,3}\). The correct upper bound is \(H^\gamma_{2,3}\), as justified next, and in general there may be a gap between \(H^\gamma_{3,3}\) and \(H^\gamma_{2,3}\). However, when \(D_3 b = 0 \ \text{a.e. in} \ \Omega\) (a condition that is automatically satisfied when \(\gamma < 2\) in the finite energy regime), then indeed
\[
H^\gamma_{2,3}(u, b, A) = H^\gamma_{3,3}(u, b, A).
\]
To see this, we refer the reader to the proof of Theorem 4.1 in [2], which still works unchanged for any \(\gamma > 0\) when \(D_3 b = 0 \ \text{a.e. in} \ \Omega\).
To prove the second inequality in (1.2) we remark that the estimates involving \{u * \varphi_j, b * \varphi_j\} led to (3.2) and (3.3) for \((u, b, A)\), and this analysis relied heavily on the fact that \(D_3u = 0\) \(L^3\) a.e. in \(\Omega\). Therefore, given \((u, b) \in \mathcal{V}, A \in \mathcal{A}(\omega)\), if \(\{u_j\} \subset W^{1, q}(\omega; \mathbb{R}^3)\) converges weakly to \(u\) in \(W^{1, q}(\omega; \mathbb{R}^3)\) and \(\{b_j\} \subset L^q(\Omega; \mathbb{R}^3)\) converges weakly to \(b\) in \(L^q(\Omega; \mathbb{R}^3)\), then we may apply (3.2) and (3.3) to \((u_j, b, A)\), and we deduce that
\[
E^*_\gamma(u, b; A) \leq \liminf_{j \to \infty} E^*_\gamma(u_j, b_j; A) \leq \liminf_{j \to \infty} \int_{A \times I} W(D_p u_j(x_\alpha) | b_j(x)) \, dx
\]
if \(\gamma \neq 2\), and if \(\gamma = 2\) that
\[
E^*_\gamma(u, b; A) \leq \liminf_{j \to \infty} E^*_\gamma(u_j, b_j; A)
\leq \liminf_{j \to \infty} \int_{A \times I} \left[W(D_p u_j(x_\alpha) | b_j(x)) + |D_3 b_j(x)|^2 \right] \, dx.
\]
Taking the infimum over all such sequences \(\{u_j\}\) and \(\{b_j\}\) yields
\[
E^*_\gamma(u, b; A) \leq H^*_\gamma(u, b; A).
\]

Theorem \(A\) covers completely the case \(\gamma < 2\) but leaves (partially) open the case \(\gamma \geq 2\) when \(D_3 b \neq 0\) \(L^3\) a.e. in \(\Omega\). We close the gap in this erratum. To be precise, if \(\gamma = 2\) and if \(W\) satisfies the additional \(q\)-Lipschitz condition
\[
|W(F) - W(G)| \leq C \left(1 + |F|^q - 1 + |G|^q - 1 \right) |F - G|\tag{1.3}
\]
for all \(F, G \in \mathbb{R}^{3 \times 3}\), then we characterize the \(\Gamma\)-limit in Theorem \(B\) while for \(\gamma > 2\) we refer to Theorem \(\mathcal{G}\).

When \(\gamma = 2\), we introduce the functional
\[
\overline{W}_2 : \mathbb{R}^{2 \times 3} \times W^{1, 2}(I; \mathbb{R}^3) \to [0, \infty)
\]
defined for \(F \in \mathbb{R}^{2 \times 3}\) and \(b \in W^{1, 2}(I; \mathbb{R}^3)\) by
\[
\overline{W}_2(F, b) := \inf_{\varphi \in L} \left\{ \int_Q \left(W(F + D_p \varphi(x) | b(x_3) + LD_3 \varphi(x)) + \frac{1}{L} D^2_p \varphi(x) \right)^2 \right.
\left. + |D p_3 \varphi(x)|^2 + |b'(x_3) + LD_3 \varphi(x)|^2 \right\} dx : \right.
\left. L > 0, \varphi \in W^{2, 2}(Q; \mathbb{R}^3), \varphi(\cdot, x_3) \mathcal{Q}^\prime-\text{periodic for} \mathcal{L}^1 \text{a.e. } x_3, \right.
\left. \int_Q D_3 \varphi(x_\alpha, x_3) \, dx_\alpha = 0 \text{ for } \mathcal{L}^1 \text{a.e. } x_3 \right\}.
\]

We have the following representation.

Theorem B. Assume that \(\gamma = 2\) and that conditions \((H_1)\)' and \((13)\) are satisfied. Then for all \((u, b) \in \mathcal{V}^2\) and \(A \in \mathcal{A}(\omega)\),
\[
E^2(u, b; A) = \int_A \overline{W}_2(D_p u(x_\alpha) | b(x_\alpha, \cdot)) \, dx_\alpha,
\]
where \(\overline{W}_2\) is defined in (14).
To prove the theorem above, we start by showing that under the q-Lipschitz condition (1.3), minimizing sequences for W^{2}_{2} prefer scales L diverging to infinity.

Proposition C. Assume that $\gamma = 2$ and that conditions $(H_{1})'$ and (1.3) are satisfied. Then for all $\mathbf{F} \in \mathbb{R}^{2 \times 3}$ and $b \in W^{1,2}(I; \mathbb{R}^{3})$ the $\inf_{\varphi, L}$ in the definition of $\overline{W}_{2}(\mathbf{F}|b)$ may be replaced by $\lim_{L \to \infty} \inf_{\varphi}$.

Proof. For $\mathbf{F} \in \mathbb{R}^{2 \times 3}$, $b \in W^{1,2}(I; \mathbb{R}^{3})$, and $L > 0$ let

$$H_{L}(\mathbf{F}|b) := \inf_{\varphi} \left\{ \int_{Q} \left(W(\mathbf{F} + \frac{D_{p} \varphi(x)}{L} | b(x_{3}) + L D_{3} \varphi(x)) + \frac{1}{L} \frac{D_{p}^{2} \varphi(x)}{L} \right)^{2} \right. \left. + |D_{p} \varphi(x)|^{2} + |b'(x_{3}) + L D_{33} \varphi(x)|^{2} \right\} dx : \varphi \in W^{2,2}(Q; \mathbb{R}^{3}), \varphi(\cdot, x_{3}) Q'-\text{periodic for } L^{1} \text{ a.e. } x_{3},$$

$$\int_{Q'} D_{3} \varphi(x_{\alpha}, x_{3}) dx_{\alpha} = 0 \text{ for } L^{1} \text{ a.e. } x_{3} \}.$$

Clearly,

$$\overline{W}_{2}(\mathbf{F}|b) \leq \liminf_{L \to \infty} H_{L}(\mathbf{F}|b).$$

We now prove that

$$\limsup_{L \to \infty} H_{L}(\mathbf{F}|b) \leq \overline{W}_{2}(\mathbf{F}|b).$$

Consider a sequence $\{L_{n}\}$ converging to infinity such that

$$\limsup_{L \to \infty} H_{L}(\mathbf{F}|b) = \lim_{n \to \infty} H_{L_{n}}(\mathbf{F}|b).$$

Let $\varphi \in W^{2,\infty}(Q; \mathbb{R}^{3})$ and $L > 0$ be admissible for $\overline{W}_{2}(\mathbf{F}|b)$, and define

$$\varphi_{n}(x) := \frac{1}{m_{n}} \varphi(m_{n} x_{\alpha}, x_{3}),$$

where

$$m_{n} := \left\lfloor \frac{L_{n}}{L} \right\rfloor.$$
with \(\lfloor L_n/L \rfloor \) the integer part of \(L_n/L \). Note that \(\varphi_n \) is admissible for \(\mathcal{H}_{L_n} \), and so

\[
\lim_{n \to \infty} \mathcal{H}_{L_n}(F|b)
\leq \liminf_{n \to \infty} \left\{ \int_Q \left(W(F + D_p \varphi_n(x)) b(x_3) + L_n D_3 \varphi_n(x) \right) + \frac{1}{L_n} D_p^2 \varphi_n(x) \right\}^2
\stackrel{1,3}{=} \liminf_{n \to \infty} \left\{ \int_Q \left(W(F + D_p \varphi(m_n x_\alpha, x_3)) b(x_3) + \frac{L_n}{m_n} D_3 \varphi(m_n x_\alpha, x_3) \right)
\frac{m_n}{L_n} D_p^2 \varphi(m_n x_\alpha, x_3) \right\}^2
\left\{ |D_p \varphi(m_n x_\alpha, x_3)|^2 + |D_3 \varphi(m_n x_\alpha, x_3)|^2
\right\} dx
\left\{ |b'(x_3) + \frac{L_n}{m_n} D_3 \varphi(m_n x_\alpha, x_3)|^2 \right\} dx.
\]

By \(1,3 \), together with the facts that \(L_n \to \infty \) and that \(\varphi \in W^{2,\infty}(Q; \mathbb{R}^3) \), we may rewrite the right-hand side of the previous inequality as

\[
\liminf_{n \to \infty} \left\{ \int_Q \left(W(F + D_p \varphi(m_n x_\alpha, x_3)) b(x_3) + L D_3 \varphi(m_n x_\alpha, x_3) \right)
\frac{1}{L} D_p^2 \varphi(m_n x_\alpha, x_3) \right\}^2
\left\{ |D_p \varphi(m_n x_\alpha, x_3)|^2
\right\} dx
+ o(1).
\]

Since \(\varphi(\cdot, x_3) \) is \(Q^r \)-periodic for \(L^1 \) a.e. \(x_3 \in I \), it follows from Lebesgue’s Dominated Convergence Theorem, Fubini’s Theorem, and the Riemann-Lebesgue Lemma that

\[
\lim_{n \to \infty} \mathcal{H}_{L_n}(F|b) \leq \int_Q \left(W(F + D_p \varphi(x_\alpha, x_3)) b(x_3) + L D_3 \varphi(x_\alpha, x_3) \right)
\frac{1}{L} D_p^2 \varphi(x_\alpha, x_3) \right\}^2
\left\{ |D_p \varphi(x_\alpha, x_3)|^2 + |b'(x_3) + L D_3 \varphi(x_\alpha, x_3)|^2 \right\} dx.
\]

Using the arbitrariness of \(\varphi \) and \(L \), the density of smooth functions in the set of test functions for \(1,3 \), and the growth hypothesis \((H_1)' \), we conclude that

\[
\lim_{n \to \infty} \mathcal{H}_{L_n}(F|b) \leq W_2(F|b). \quad \square
\]

To prove Theorem \(1 \) it is enough to show that for any given sequence \(\{\varepsilon_n\} \), with \(\varepsilon_n \to 0^+ \), there exists a subsequence \(\{\varepsilon_{n_k}\} \) of \(\{\varepsilon_n\} \) such that the \(\Gamma \)-lower limit, defined
for all \((u, b) \in \mathcal{V}^{2}\) and \(A \in \mathcal{A}(\omega)\).

To choose the subsequence \(\{\varepsilon_{n_{k}}\}\), let \(\mathcal{R}(\omega)\) be the countable subfamily of \(\mathcal{A}(\omega)\) obtained by taking all finite unions of open squares in \(\omega\) with faces parallel to the axes, centered at \(x_{n} \in \omega \cap \mathbb{Q}^{2}\) and with rational edge length. Since \(L^{1}(\Omega; \mathbb{R}^{3})\) is a separable metric space, using Kuratowski’s Compactness Theorem and a diagonal argument, we may find a subsequence \(\{\varepsilon_{n_{k}}\}\) of \(\{\varepsilon_{n}\}\) such that

\[\Gamma-\lim_{k \to \infty} E^{2}_{\varepsilon_{n_{k}}} (u, b; A) \text{ exists for all } (u, b) \in \mathcal{V}^{2} \text{ and for all } A' \in \mathcal{R}(\omega).\] (1.7)

Theorem D. Assume that condition \((H_{1})'\) is satisfied and that \(\gamma = 2\). Then for every \((u, b) \in \mathcal{V}^{2}\) the set function \(E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; \cdot)\) is the trace of a Radon measure absolutely continuous with respect to \(\mathcal{L}^{2}\mid_{\omega}\).

Proof: The proof is very similar to that of Theorem 4.2 in [3], and thus we only indicate the main changes.

Step 1: Fix \((u, b) \in \mathcal{V}^{2}\). We claim that

\[E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A_{1}) \leq E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A_{2}) + E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A_{1} \setminus \Omega_{3})\] (1.8)

for all \(A_{1}, A_{2}, A_{3} \in \mathcal{A}(\omega)\), with \(A_{3} \subseteq A_{2} \subseteq A_{1}\).

Without loss of generality we may assume that the right-hand side of the previous inequality is finite.

Fix \(\eta > 0\) and find \(\{u_{k}\} \subset W^{2, 2}(\Omega; \mathbb{R}^{3})\) converging weakly to \(u\) in \(W^{1, \gamma}(\Omega; \mathbb{R}^{3})\) and such that \(\frac{1}{\varepsilon_{n_{k}}} D_{3} u_{k} \rightharpoonup b\) in \(L^{\gamma}(\Omega; \mathbb{R}^{3})\), and

\[\lim_{k \to \infty} \inf E^{2}_{\varepsilon_{n_{k}}} (u_{k}; (A_{1} \setminus \Omega_{3})) \leq E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A_{1} \setminus \Omega_{3}) + \eta.\]

Extract a subsequence \(\{n_{k_{j}}\}\) for which

\[\lim_{j \to \infty} E^{2}_{\varepsilon_{n_{k_{j}}}} (u_{k_{j}}; (A_{1} \setminus \Omega_{3})) \leq E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A_{1} \setminus \Omega_{3}) + \eta.\] (1.9)

Let \(A' \in \mathcal{R}(\omega)\) be such that \(A_{3} \subseteq A' \subseteq A_{2}\). By (1.7) there exists a sequence \(\{v_{k}\} \subset W^{2, 2}(\Omega; \mathbb{R}^{3})\) converging weakly to \(u\) in \(W^{1, \gamma}(\Omega; \mathbb{R}^{3})\) and such that \(\frac{1}{\varepsilon_{n_{k}}} D_{3} v_{k} \rightharpoonup b\) in \(L^{\gamma}(\Omega; \mathbb{R}^{3})\), and

\[E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A') = \lim_{k \to \infty} E^{2}_{\varepsilon_{n_{k}}} (v_{k}; A').\]

In particular,

\[E^{\varepsilon}_{\{\varepsilon_{n_{k}}\}} (u, b; A') = \lim_{j \to \infty} E^{2}_{\varepsilon_{n_{k_{j}}}} (v_{k_{j}}; A').\] (1.10)
For every $v \in W^{2,2}(\Omega; \mathbb{R}^3)$, for every Borel set $E \subset \omega$, and for every $j \in \mathbb{N}$ define

$$
G_j(v; E) := \int_{E \times I} \left(1 + |D_p v|^q + \frac{1}{\varepsilon_{nk_j}} |D_3 v|^q \right) \, dx \\
+ \int_{E \times I} \left(\frac{\varepsilon_{nk_j}^2}{\varepsilon_{nk_j}^4} |D_p^2 v|^2 + |D_p v|^2 + \frac{1}{\varepsilon_{nk_j}^2} |D_3 v|^2 \right) \, dx.
$$

Due to the coercivity hypothesis $(H_1)'$ we may extract a bounded subsequence from the sequence of measures $\nu_j := G_j(u_{nk_j}; \cdot) + G_j(v_{nk_j}; \cdot)$ restricted to $A' \setminus \overline{A_3}$ converging \ast-weakly to some Radon measure ν defined on $A' \setminus \overline{A_3}$.

Find $t > 0$ such that $\nu(S_t) = 0$, where

$$
S_t := \{ x_\alpha \in A' : \text{dist}(x_\alpha, \partial A_3) = t \}.
$$

For $\delta > 0$ define

$$
L_\delta := \{ x_\alpha \in A' : \text{dist}(x_\alpha, S_t) < \delta \}.
$$

Choose δ so small that $L_\delta \subset A' \setminus \overline{A_3}$. Consider a smooth cut-off function $\varphi_\delta \in C_0^\infty(A_2; [0, 1])$ such that $\varphi_\delta = 1$ in

$$
\{ x_\alpha \in A' : \text{dist}(x_\alpha, \partial A_3) < t - \delta \}
$$

and $\varphi_\delta = 0$ in

$$
\{ x_\alpha \in A' : \text{dist}(x_\alpha, \partial A_3) > t + \delta \},
$$

with

$$
\| D_p \varphi_\delta \|_{L^\infty(\omega)} \leq C/\delta, \quad \| D^2_p \varphi_\delta \|_{L^\infty(\omega)} \leq C/\delta^2.
$$

Define

$$
\tilde{u}_k(x) := \left\{ \begin{array}{ll}
(1 - \varphi_\delta(x_\alpha))u_{kj}(x) + \varphi_\delta(x_\alpha)v_{kj}(x) & \text{if } k = kj \text{ for some } j \in \mathbb{N}, \\
u(x_\alpha) + \varepsilon_{nk_j} \int_0^\delta (b * \psi_{kj})(x_\alpha, s) \, ds & \text{otherwise,}
\end{array} \right.
$$

where $\psi_{kj} = \psi_k(x_\alpha)$ is a standard mollifier. Then $\tilde{u}_k \rightharpoonup u$ in $W^{1,q}(\Omega; \mathbb{R}^3)$ and since φ_δ does not depend on x_α, we also have that $\frac{1}{\varepsilon_{nk_j}} D_3 \tilde{u}_k \rightharpoonup b$ in $L^q(\Omega; \mathbb{R}^3)$ as $k \to \infty$.

Hence

$$
E^-_{\varepsilon_{nk_j}}(u, b; A_1) \leq \liminf_{k \to \infty} E^2_{\varepsilon_{nk_j}}(u_{kj}; A_1) \leq \liminf_{j \to \infty} E^2_{\varepsilon_{nk_j}}(\tilde{u}_{kj}; A_1). \quad (1.11)
$$

Thus it remains to estimate the right-hand side of the previous inequality. By the growth condition $(H_1)'$, we have the estimate

$$
E^2_{\varepsilon_{nk_j}}(\tilde{u}_{kj}; A_1) \leq E^2_{\varepsilon_{nk_j}}(u_{kj}; A_1 \setminus \overline{A_3}) + E^2_{\varepsilon_{nk_j}}(v_{kj}; A')
$$

$$
+ C \left(G_j(u_{kj}; \cdot) + G_j(v_{kj}; \cdot) \right) \left(\frac{C\varepsilon_{nk_j}^2}{\delta^4} \int_{L_\delta \times I} |u_{kj} - v_{kj}|^q \, dx + \frac{C\varepsilon_{nk_j}^2}{\delta^4} \int_{L_\delta \times I} |u_{kj} - v_{kj}|^2 \, dx \right) \quad (1.12)
$$

$$
+ \frac{C\varepsilon_{nk_j}^2}{\delta^2} \int_{L_\delta \times I} |D_p u_{kj} - D_p v_{kj}|^2 \, dx + \frac{C}{\delta^2} \int_{L_\delta \times I} |D_3 u_{kj} - D_3 v_{kj}|^2 \, dx.
$$

Since

$$
\sup_{j \in \mathbb{N}} \int_{L_\delta \times I} |\varepsilon_{nk_j} D^2 u_{kj}|^2 \, dx < \infty,
$$
by Poincaré’s inequality we have that
\[
\int_{L_\delta \times I} |\varepsilon_{n_k} D u_{k_j} - c_j|^2 \, dx \leq C_\delta \int_{L_\delta \times I} |\varepsilon_{n_k} D^2 u_{k_j}|^2 \, dx,
\]
where
\[
c_j := \frac{1}{L^2(L_\delta)} \int_{L_\delta \times I} \varepsilon_{n_k} D u_{k_j} \, dx \to 0.
\]
Hence
\[
\sup_{j \in \mathbb{N}} \int_{L_\delta \times I} |\varepsilon_{n_k} D u_{k_j}|^2 \, dx < \infty.
\]
It follows by the Rellich-Kondrachov Theorem and the fact that \(u_{k_j} \to u \) in \(W^{1,q}(\Omega; \mathbb{R}^3) \) that \(\varepsilon_{n_k} D u_{k_j} \to 0 \) in \(L^2(L_\delta \times I; \mathbb{R}^{3 \times 3}) \). Again by Poincaré’s inequality we have that
\[
\int_{L_\delta \times I} |\varepsilon_{n_k} u_{k_j} - d_j|^2 \, dx \leq C_\delta \int_{L_\delta \times I} |\varepsilon_{n_k} D u_{k_j}|^2 \, dx,
\]
where
\[
d_j := \frac{1}{L^2(L_\delta)} \int_{L_\delta \times I} \varepsilon_{n_k} u_{k_j} \, dx \to 0,
\]
and so \(\varepsilon_{n_k} u_{k_j} \to 0 \) in \(L^2(L_\delta \times I; \mathbb{R}^3) \). Similar conclusions hold for \(v_{k_j} \). Hence, letting \(j \to \infty \) in \((1.12) \) and using \((1.9) \) and \((1.10) \), we have
\[
E_{\{\varepsilon_{n_k}\}}(u, b; A) \leq E_{\{\varepsilon_{n_k}\}}(u, b; A_1 \setminus \bar{A}_3) + E_{\{\varepsilon_{n_k}\}}(u, b; A') + \eta + C \nu(L_\delta)
\]
\[
\leq E_{\{\varepsilon_{n_k}\}}(u, b; A_1 \setminus \bar{A}_3) + E_{\{\varepsilon_{n_k}\}}(u, b; A_2) + \eta + C \nu(L_\delta)
\]
and letting \(\delta \) go to zero we obtain
\[
E_{\{\varepsilon_{n_k}\}}(u, b; A_1) \leq E_{\{\varepsilon_{n_k}\}}(u, b; A_2) + E_{\{\varepsilon_{n_k}\}}(u, b; A_1 \setminus \bar{A}_3) + 2\eta + C \nu(S_\delta)
\]
\[
= E_{\{\varepsilon_{n_k}\}}(u, b; A_2) + E_{\{\varepsilon_{n_k}\}}(u, b; A_1 \setminus \bar{A}_3) + 2\eta.
\]
It suffices to let \(\eta \to 0^+ \). \(\square \)

As an immediate consequence of the previous theorem we have
\[
E_{\{\varepsilon_{n_k}\}}(u, b; A) = \int_A \frac{dE_{\{\varepsilon_{n_k}\}}(u, b; \cdot)}{dL^3} (x_\alpha) \, dx_\alpha,
\]
where \(\frac{dE_{\{\varepsilon_{n_k}\}}(u, b; \cdot)}{dL^3} \) is the Radon-Nikodým derivative of \(E_{\{\varepsilon_{n_k}\}}(u, b; \cdot) \) with respect to the Lebesgue measure in \(\mathbb{R}^3 \).

Remark E. A proof almost identical to that of Remark 4.3 in [2] shows that \(\bar{W}_2(\cdot, \cdot) \) is upper semi-continuous on \(\mathbb{R}^{2 \times 3} \times W^{1,2}(I; \mathbb{R}^3) \) equipped with its strong topology.

We now turn to the proof of Theorem B. The argument is very similar to that of Theorem 4.4 in [2] with the exception that in the proof of the lower bound the additional hypothesis \((1.3) \) allows us to avoid the use of equi-integrable sequences.

Proof. Fix \((u, b) \in \mathcal{V}^2\) and \(A \in \mathcal{A}(\omega) \). As usual, we identify \(u \) with a function in \(W^{1,q}(\omega; \mathbb{R}^3) \). Also, for simplicity of notation, from now on we write \(\varepsilon_k \) in place of \(\varepsilon_{n_k} \).

Lower bound. We claim that
\[
E_{\{\varepsilon_k\}}(u, b; A) \geq \int_A \bar{W}_2(D_p u(x_\alpha))b(x_\alpha, \cdot) \, dx_\alpha.
\] (1.13)
Consider any sequence \(\{u_k\} \subset W^{2,2}(\Omega; \mathbb{R}^3) \) such that \(u_k \rightharpoonup u \) in \(W^{1,q}(\Omega; \mathbb{R}^3) \), \(\frac{1}{\varepsilon_k} D_3 u_k \rightharpoonup b \) in \(L^q(\Omega; \mathbb{R}^3) \). Extracting a subsequence, if necessary, we may assume, without loss of generality, that
\[
\liminf_{k \to \infty} E_{\varepsilon_k}^2(u_k; A) = \lim_{k \to \infty} E_{\varepsilon_k}^2(u_k; A)
\tag{1.14}
\]
and that the bounded sequence
\[
\mu_k := \left(W \left(D_p u_k \frac{1}{\varepsilon_k} D_3 u_k \right) + \varepsilon_k^2 |D_p^2 u_k|^2 + |D_p D_3 u_k|^2 + \frac{1}{\varepsilon_k} |D_3^3 u_k|^2 \right) \mathcal{E}^3((A \times I)
\right)
\]
satisfies
\[
\mu_k \rightharpoonup^* \mu \text{ in } \mathcal{M}(A \times I)
\]
for some nonnegative finite Radon measure \(\mu \) on \(A \times I \). Denote by \(\hat{\mu} \) the finite Radon measure on \(A \) defined by
\[
\hat{\mu}(B) := \mu(B \times I),
\]
for all Borel sets \(B \subset A \). We will show below that the Radon-Nikodým derivative of \(\hat{\mu} \) with respect to the Lebesgue measure on \(\mathbb{R}^2 \) satisfies
\[
\frac{d\hat{\mu}}{d\mathcal{L}^2}(x) \geq \mathcal{W}_2(D_p u(x) | b(x, \cdot))
\tag{1.15}
\]
for \(\mathcal{L}^2 \) a.e. every point \(x \in A \).

Note that if (1.15) holds, then from (1.14),
\[
\lim_{k \to \infty} E_{\varepsilon_k}^2(u_k; A) = \lim_{k \to \infty} \mu_k(A \times I) \geq \hat{\mu}(A)
\]
\[
\geq \int_A \frac{d\hat{\mu}}{d\mathcal{L}^2}(x) \, dx = \int_A \mathcal{W}_2(D_p u(x) | b(x, \cdot)) \, dx.
\]
Taking the infimum over all admissible sequences \(\{u_k\} \) we obtain (1.13).

Step 2: As in Lemma 5.1 in [2], it can be shown, that, up to the extraction of a subsequence,
\[
\frac{1}{\varepsilon_k} D_3 u_k(\cdot, x_3) \rightharpoonup b(\cdot, x_3) \text{ in } L^q(A; \mathbb{R}^3) \text{ for all } x_3 \in I
\tag{1.16}
\]
and that for any Borel subset \(B \subset A \) and for all \(x_3 \in I, \)
\[
\sup_{k \in \mathbb{N}} \int_B \frac{1}{\varepsilon_k} D_3 u_k(x, x_3) \, dx < \infty.
\tag{1.17}
\]

We now address the proof of (1.15). Since \(u \in W^{1,q}(\omega; \mathbb{R}^3) \), for \(\mathcal{L}^2 \) a.e. \(x^0_\alpha \in A \) we have
\[
\lim_{\delta \to 0^+} \frac{1}{\delta^{q+q}} \int_{Q'(x_\alpha, \delta)} |u(x_\alpha) - u(x^0_\alpha) - D_p u(x^0_\alpha)(x_\alpha - x^0_\alpha)|^q \, dx_\alpha = 0.
\tag{1.18}
\]
Moreover, viewing \(b \) as a Bochner integrable function, that is, an element of
\[
L^q(A; L^q(\mathbb{R}^3)),
\]
for \(\mathcal{L}^2 \) a.e. \(x^0_\alpha \in A \) we have
\[
\lim_{\delta \to 0^+} \int_{\frac{1}{\delta}} \frac{1}{\delta^q} \int_{Q'(x^0_\alpha, \delta)} b(x_\alpha, x_3) \, dx_\alpha - b(x^0_\alpha, x_3) \, dx_3 = 0.
\tag{1.19}
\]
Fix a point \(x_0^0 \in A \) that satisfies (1.18), (1.19), and such that
\[b(x_0^0, \cdot) \in W^{1,2}(I; \mathbb{R}^3) \]
and
\[\frac{d\mu}{d\mathcal{L}^2}(x_0^0) \text{ exists and is finite.} \]

We claim that (1.15) holds at \(x_0^0 \).
Consider a sequence \(\{\delta_i\} \), with \(\delta_i \to 0^+ \) such that
\[\lim_{i \to \infty} \frac{1}{(\delta_i)^2} \int_{Q'(x_0^0, \delta_i)} b(x_\alpha, x_3) \, dx_\alpha = b(x_0^0, x_3) \]
for \(\mathcal{L}^1 \) a.e. \(x_3 \in I \), and
\[\mu(\partial (Q'(x_0^0, \delta_i) \times \bar{I}) = 0. \]

From the definition of \(\hat{\mu} \) together with that of the Radon-Nikodým derivative, we obtain
\[\frac{d\hat{\mu}}{d\mathcal{L}^2}(x_0^0) = \lim_{i \to \infty} \frac{\hat{\mu}(Q'(x_0^0, \delta_i))}{(\delta_i)^2} = \lim_{i \to \infty} \frac{\mu(Q'(x_0^0, \delta_i) \times I)}{(\delta_i)^2} \]
\[= \lim_{i \to \infty} \lim_{k \to \infty} \frac{1}{(\delta_i)^2} \left(\int_{Q'(x_0^0, \delta_i) \times I} W \left(D_p u_k(x) \right) \frac{1}{\varepsilon_k} D_3 u_k(x) \right) \right) \, dx
\[+ \int_{Q'(x_0^0, \delta_i) \times I} \left(\varepsilon_k^2 |D_p^2 u_k(x)|^2 + |D_p u_k(x)|^2 + \frac{1}{\varepsilon_k} |D_3 u_k(x)|^2 \right) \, dx
\[= \lim_{i \to \infty} \lim_{k \to \infty} \left(\int_{Q} W \left(D_p v_{k,i}(y) \right) \frac{\delta_i}{\varepsilon_k} D_3 v_{k,i}(y) \right) \, dy
\[+ \int_{Q} \left(\frac{\delta_i}{\varepsilon_k} \right)^2 |D_p^2 v_{k,i}(y)|^2 + |D_p v_{k,i}(y)|^2 + \frac{\delta_i}{\varepsilon_k} |D_3 v_{k,i}(y)|^2 \right) \, dy, \]

where for \(y \in Q \),
\[v_{k,i}(y) := \frac{u_k(x_0^0 + \delta_i y_0, y_3) - u(x_0^0)}{\delta_i}, \]
\[u_0(y_0) := D_p u(x_0^0) \cdot y_0, \quad b_0(y_3) := b(x_0^0, y_3). \]

Note that, since \(u_k \to u \) in \(L^q(\Omega; \mathbb{R}^3) \) and by (1.18), we have
\[\lim_{i \to \infty} \lim_{k \to \infty} \int_{Q} |v_{k,i}(y) - u_0(y_0)|^q \, dy \]
\[= \lim_{i \to \infty} \lim_{k \to \infty} \frac{1}{(\delta_i)^{2+q}} \int_{Q'(x_0^0, \delta_i) \times I} |u_k(x) - u(x_0^0) - D_p u(x_0^0) \cdot (x_\alpha - x_0^0)|^q \, dx
\[= \lim_{i \to \infty} \frac{1}{(\delta_i)^{2+q}} \int_{Q'(x_0^0, \delta_i)} |u(x_\alpha) - u(x_0^0) - D_p u(x_0^0) \cdot (x_\alpha - x_0^0)|^q \, dx_\alpha = 0. \]

On the other hand, in view of (1.16), for all \(y_3 \in I \),
\[\lim_{k \to \infty} \int_{Q'} \frac{\delta_i}{\varepsilon_k} D_3 v_{k,i}(y_0, y_3) \, dy_3 = \lim_{k \to \infty} \frac{1}{(\delta_i)^2} \int_{Q'(x_0^0, \delta_i)} \frac{1}{\varepsilon_k} D_3 u_k(x_\alpha, y_3) \, dx_\alpha
\[= \frac{1}{\delta_i^2} \int_{Q'(x_0^0, \delta_i)} b(x_\alpha, y_3) \, dx_\alpha, \]
and so by (1.17) it follows from Lebesgue’s Dominated Convergence Theorem that

\[
\lim_{k \to \infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \int_{Q'} \frac{\delta_i}{\varepsilon_k} D_3 v_{k,i}(y_\alpha, y_3) \, dy_\alpha - b_0(y_3) \right|^q \, dy_3
\]

\[
= \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \frac{1}{(\delta_i)^2} \int_{Q'(x_0^i, \delta_i)} b(x_\alpha, x_3) \, dx_\alpha - b(x_0^i, x_3) \right|^q \, dx_3.
\]

By (1.19) we have

\[
\lim_{i \to \infty} \lim_{k \to \infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \int_{Q'} \frac{\delta_i}{\varepsilon_k} D_3 v_{k,i}(y_\alpha, y_3) \, dy_\alpha - b_0(y_3) \right|^q \, dy_3 = 0.
\]

By a standard diagonalization argument, we may extract subsequences \(v_i := v_{k,i} \) and \(\varepsilon_i := \frac{\delta_{k,i}}{\delta_i} \to 0^+ \) such that

\[
\left(\int_Q W \left(D_p v_i \left| \frac{1}{\varepsilon_i} D_3 v_i \right| \right) + \int_Q \left(\varepsilon_i^2 |D_p^2 v_i|^2 + |D_{p3} v_i|^2 + \frac{1}{\varepsilon_i^2} |D_{33} v_i|^2 \right) \, dy \right)^{\frac{1}{2}} \to 0
\]

\[
\lim_{i \to \infty} \int_Q |v_i - u_0|^q \, dy = 0, \quad (1.23)
\]

\[
\lim_{i \to \infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \int_{Q'} \frac{1}{\varepsilon_i} D_3 v_i(y_\alpha, y_3) \, dy_\alpha - b_0(y_3) \right|^q \, dy_3 = 0. \quad (1.24)
\]

Reasoning as in Theorem \(D \) we can assume, without loss of generality, that \(v_i = u_0 \) in a neighborhood of \(\partial Q' \times I \).

For \(y \in Q \) define

\[
\varphi_i(y) := v_i(y) - u_0(y_\alpha) - \int_{Q'} (v_i - u_0)(w_\alpha, y_3) \, dw_\alpha.
\]

Then

\[
D_p \varphi_i(y) = D_p v_i(y) - D_p u(x_0^i), \quad (1.25)
\]

\[
\frac{1}{\varepsilon_i} D_{33} \varphi_i(y) = \frac{1}{\varepsilon_i} D_{33} v_i(y) - \int_{Q'} \frac{1}{\varepsilon_i} D_{33} v_i(w_\alpha, y_3) \, dw_\alpha, \quad (1.26)
\]

\[
\frac{1}{\varepsilon_i} D_{33} \varphi_i(y) = \frac{1}{\varepsilon_i} D_{33} v_i(y) - \int_{Q'} \frac{1}{\varepsilon_i} D_{33} v_i(w_\alpha, y_3) \, dw_\alpha, \quad (1.27)
\]

and note that

\[
\int_{Q'} D_3 \varphi_i(y_\alpha, y_3) \, dy_\alpha = 0 \text{ for all } y_3 \in I. \quad (1.28)
\]
Since \(\varphi_1(\cdot, y_3) \) is \(Q' \)-periodic for \(L^1 \) a.e. \(y_3 \), it follows that \(\varphi_1 \) is admissible in the definition of \(\nabla_2 (D_p u(x_{\alpha}^0)) b(x_{\alpha}^0, \cdot)) \). Moreover,

\[
\int_Q W \left(D_p v_i (y) \left[\frac{1}{\varepsilon_i} D_{33} v_i (y) \right] \right) dy \\
+ \int_Q \left(\varepsilon_i^2 |D_{33}^2 v_i (y)|^2 + |D_{33} v_i (y)|^2 + \frac{1}{\varepsilon_i} |D_{33} v_i (y)|^2 \right) dy \\
= \int_Q W \left(D_p u(x_{\alpha}^0) + D_p \varphi_i (y) \right) b_0 (y_3) + \frac{1}{\varepsilon_i} D_{33} \varphi_i (y) + z_i (y_3) \\
+ \int_Q \left(\varepsilon_i^2 |D_{33}^2 \varphi_i (y)|^2 + |D_{33} \varphi_i (y)|^2 + \left| b_0' (y_3) + \frac{1}{\varepsilon_i} D_{33} \varphi_i (y) + z_i' (y_3) \right|^2 \right) dy,
\]

where

\[
z_i (y_3) := \int_{Q'} \frac{1}{\varepsilon_i} D_{33} v_i (w_{\alpha}, y_3) dw_{\alpha} - b_0 (y_3).
\]

Since by (1.28),

\[
\int_{Q'} D_{33} \varphi_i (y_3, y_3) dy_{\alpha} = D_3 \left(\int_{Q'} D_{33} \varphi_i (y_3, y_3) dy_{\alpha} \right) = 0 \text{ for all } y_3 \in I,
\]

it follows that

\[
\int_Q \left| b_0' + \frac{1}{\varepsilon_i} D_{33} \varphi_i + z_i' \right|^2 dy \geq \int_Q \left| b_0' + \frac{1}{\varepsilon_i} D_{33} \varphi_i \right|^2 dy + 2 \int_Q \left(b_0' + \frac{1}{\varepsilon_i} D_{33} \varphi_i \right) \cdot z_i' dy \\
= \int_Q \left| b_0' + \frac{1}{\varepsilon_i} D_{33} \varphi_i \right|^2 dy + 2 \int_Q b_0' \cdot z_i' dy.
\]

We claim that

\[
z_i \to 0 \text{ in } W^{1,2} (I; \mathbb{R}^3).
\]

If the claim holds, then letting \(i \to \infty \) in the previous inequality yields

\[
\limsup \sup_i \int_Q \left| b_0' + \frac{1}{\varepsilon_i} D_{33} \varphi_i + z_i' \right|^2 dy \geq \limsup \sup_i \int_Q \left| b_0' + \frac{1}{\varepsilon_i} D_{33} \varphi_i \right|^2 dy.
\]

To prove (1.32) note that, up to a subsequence, from (1.22) and (1.24) we may assume that \(z_i (y_3) \to 0 \) for \(L^1 \) a.e. \(y_3 \in I \) and that

\[
\sup_i \int_Q \left| \frac{1}{\varepsilon_i} D_{33} v_i \right|^2 dy \leq \infty.
\]

Hence by Hölder’s Inequality,

\[
\int_{Q} \left| z_i' (y_3) \right|^2 dy_3 \leq 2 \int_{Q} \left[\left(\int_{Q'} \frac{1}{\varepsilon_i} D_{33} v_i (w_{\alpha}, y_3) dw_{\alpha} \right)^2 + \left| b_0' (y_3) \right|^2 \right] dy_3 \\
\leq 2 \int_{Q} \left[\left(\int_{Q'} \frac{1}{\varepsilon_i} D_{33} v_i (w_{\alpha}, y_3) \right)^2 dw_{\alpha} + \left| b_0' (y_3) \right|^2 \right] dy_3,
\]
and so also by (1.24),
\[
\sup_i \int_{-\frac{1}{2}}^{\frac{1}{2}} |z_i'(y_3)|^2 \, dy_3 < \infty.
\]

By extracting a further subsequence, if necessary, and appealing to (1.24) we have shown (1.32). In particular, \(z_i \to 0\) uniformly. Moreover, by the coercivity hypothesis \((H_1)’\) and (1.22),
\[
\sup_i \int Q \left(|D_p \varphi_i(y)|^q + \left| \frac{1}{\varepsilon_i} D_3 \varphi_i(y) \right|^q \right) \, dy < \infty.
\]

Hence, using the \(q\)-Lipschitz condition (1.3) we obtain
\[
\int_Q W \left(D_p u(x_0^0) + D_p \varphi_i \bigg| b_0 + \frac{1}{\varepsilon_i} D_3 \varphi_i + z_i \right) \, dy \\
\geq \int_Q W \left(D_p u(x_0^0) + D_p \varphi_i \bigg| b_0 + \frac{1}{\varepsilon_i} D_3 \varphi_i \right) \, dy + o(1).
\]

In turn, using also (1.22), (1.33), we have that
\[
\frac{d \bar{\mu}}{dE^2}(x_0^0) \geq \lim_{i \to \infty} \sup_i \left(\int_Q \left[W \left(D_p u(x_0^0) + D_p \varphi_i \bigg| b_0 + \frac{1}{\varepsilon_i} D_3 \varphi_i \right) \right] \, dy \\
\quad + \int_Q \left(\varepsilon_i^2 |D_p^2 \varphi_i|^2 + |D_p D_3 \varphi_i|^2 + |b_0 + \frac{1}{\varepsilon_i} D_3 \varphi_i|^2 \right) \, dy \right).
\]

Since by construction \(\varphi_i\) are admissible functions in the definition of \(\mathcal{W}(D_p u(x_0^0) | b(x_0^0, \cdot))\) (see (1.23)), it follows that
\[
\frac{d \bar{\mu}}{dE^2}(x_0^0) \geq \mathcal{W}_2(D_p u(x_0^0) | b(x_0^0, \cdot)),
\]
and the proof of (1.15) is complete.

Upper bound. We first prove the upper bound
\[
E_{(\varepsilon_k)}^-(u, b; A) \leq \int_A \mathcal{W}_2(D_p u(x_0^0) | b(x_0^0, \cdot)) \, dx_0 \tag{1.34}
\]

when \(u(x_0) = \mathcal{F} x_0 + c\) for all \(x_0 \in \Omega'\) and for some \(\mathcal{F} \in \mathbb{R}^{3 \times 2}, c \in \mathbb{R}^3,\) and \(b \in W^{1,2} (I; \mathbb{R}^3)\).

For \(\eta > 0\) fixed, choose \(\varphi \in W^{2,\infty}(Q; \mathbb{R}^3)\), and \(L \geq 0\), with \(\varphi(\cdot, x_3)\) \(Q\)-periodic and \(\int_Q D_3 \varphi(x_0, x_3) \, dx_0 = 0\) for \(L^1\) a.e. \(x_3 \in I\), such that
\[
\int_Q \left[W \left(F + D_p \varphi(x) | b(x_3) + \frac{1}{L} D_p^2 \varphi(x) \right) \right] \, dx \\
\quad + |b'(x_3) + L D_3 \varphi(x)|^2 \, dx \tag{1.35}
\]

\[
\leq \mathcal{W}_2(F|b) + \eta.
\]

Extend \(\varphi(\cdot, x_3)\) periodically with period \(Q'\) and for \(x \in \Omega\) define
\[
u_k(x_0, x_3) := \mathcal{F} x_0 + c + \varepsilon_k \int_0^{x_3} b(s) \, ds + L \varepsilon_k \varphi \left(\frac{x_0}{L \varepsilon_k}, x_3 \right). \tag{1.36}
\]
Since \(b \) and \(\varphi \) are bounded, it follows that \(\{u_k\} \) converges uniformly to \(u \). In addition, for \(x \in \Omega \) we have that
\[
D_p u_k (x) = \mathcal{F} + D_p \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right),
\]
\[
\frac{1}{\varepsilon_k} D_3 u_k (x) = b (x_3) + LD_3 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right).
\]
Hence \(\{D_p u_k\} \) is bounded in \(L^\infty \) while \(\{D_3 u_k\} \) goes to 0 in \(L^q \), and so \(u_k \rightharpoonup u \) in \(W^{1,q} (\Omega; \mathbb{R}^3) \), while by the Riemann-Lebesgue Lemma, Fubini’s Theorem, and the fact that
\[
\int_{Q'} D_3 \varphi (x_\alpha , x_3) \, dx_\alpha = 0
\]
for \(L^1 \) a.e. \(x_3 \in I \), we have that \(\frac{1}{\varepsilon_k} D_3 u_k \rightharpoonup b \) in \(L^q (\Omega; \mathbb{R}^3) \). This proves that the sequence \(\{u_k\} \) is admissible for \(E^-_{\{u_k\}} (u; b; A) \), and we have
\[
E^-_{\{u_k\}} (u, b; A) \leq \liminf_{k \to \infty} E^2_{\varepsilon_k} (u_k; A)
\]
\[
= \liminf_{k \to \infty} \left(\int_{\Omega \times I} W \left(D_p u_k \left| \frac{1}{\varepsilon_k} D_3 u_k \right| \right) \, dx + \int_{\Omega \times I} \varepsilon_k^2 \left(|D_p^2 u_k|^2 + \frac{1}{\varepsilon_k^2} |D_p^3 u_k|^2 + \frac{1}{\varepsilon_k^4} |D_3^3 u_k|^2 \right) \, dx \right). \tag{1.37}
\]
We have that
\[
\int_{\Omega \times I} W \left(D_p u_k (x) \left| \frac{1}{\varepsilon_k} D_3 u_k (x) \right| \right) \, dx = \int_{\Omega \times I} W \left(\mathcal{F} + D_p \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right), b (x_3) + LD_3 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right) \right) \, dx. \tag{1.38}
\]
On the other hand, for \(x \in \Omega \) we have that
\[
D_p^2 u_k (x) = \frac{1}{L \varepsilon_k} D_p \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right),
\]
\[
D_p^3 u_k (x) = D_p^3 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right),
\]
\[
D_3^3 u_k (x) = \varepsilon_k b' (x_3) + LD_3 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right),
\]
and so
\[
\int_{\Omega \times I} \varepsilon_k^2 \left(|D_p^2 u_k|^2 + \frac{1}{\varepsilon_k^2} |D_p^3 u_k|^2 + \frac{1}{\varepsilon_k^4} |D_3^3 u_k|^2 \right) \, dx \tag{1.39}
\]
\[
= \int_{\Omega \times I} \left(\frac{1}{L^2} |D_p^2 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right)|^2 + |D_p^3 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right)|^2 + b' (x_3) + LD_3 \varphi \left(\frac{x_\alpha}{L \varepsilon_k} , x_3 \right) \right) \, dx. \tag{1.40}
\]
Since, for \mathcal{L}^1 a.e. $x_3 \in I$ the function
\[
W \left(F + D_{p}\varphi (\cdot, x_3) | b (x_3) + LD_{3}\varphi (\cdot, x_3) \right) + \frac{1}{L^2} \left| D_{p}^2\varphi (\cdot, x_3) \right|^2 + \left| D_{p}\varphi (\cdot, x_3) \right|^2 + \left| D_{3}\varphi (\cdot, x_3) \right|^2
\]
is Q'-periodic, it converges weakly in $L^1(A)$ to its mean, that is, to
\[
\int_{Q'} \left(W \left(F + D_{p}\varphi (x_3, x_3) | b (x_3) + LD_{3}\varphi (x_3, x_3) \right) + \frac{1}{L^2} \left| D_{p}^2\varphi (x_3, x_3) \right|^2 + \left| D_{p}\varphi (x_3, x_3) \right|^2 + \left| D_{3}\varphi (x_3, x_3) \right|^2 \right) dx.
\]
Lebesgue’s Dominated Convergence Theorem and Fubini’s Theorem imply that
\[
\lim_{k \to \infty} \int_{A \times I} W \left(F + D_{p}\varphi \left(\frac{x_3}{L_k}, x_3 \right) | b (x_3) + LD_{3}\varphi \left(\frac{x_3}{L_k}, x_3 \right) \right) dx = L^2(A) \int_{Q'} W \left(F + D_{p}\varphi (x_3, x_3) | b (x_3) + LD_{3}\varphi (x_3, x_3) \right) dx
\]
and
\[
\lim_{k \to \infty} \int_{A \times I} \left(L^2 \left| D_{p}^2\varphi \left(\frac{x_3}{L_k}, x_3 \right) \right|^2 + \left| D_{p}\varphi \left(\frac{x_3}{L_k}, x_3 \right) \right|^2 \right) dx \]
\[
+ \left| b' (x_3) + LD_{3}\varphi \left(\frac{x_3}{L_k}, x_3 \right) \right|^2
\]
\[
= L^2(A) \int_{Q'} \left(\frac{1}{L^2} \left| D_{p}^2\varphi (x_3, x_3) \right|^2 + \left| D_{p}\varphi (x_3, x_3) \right|^2 + \left| b' (x_3) + LD_{3}\varphi (x_3, x_3) \right|^2 \right) dx,
\]
which, in view of (1.33), (1.37), (1.38), and (1.39), finally yields
\[
E_{\{\varepsilon \to 0\}} \left(u, b; A \right) \leq L^2(A)[\overline{W}_2(F | b) + \eta].
\]
Letting η tend to 0, we conclude
\[
E_{\{\varepsilon \to 0\}} \left(u, b; A \right) \leq L^2(A)[\overline{W}_2(F | b)].
\]
This proves (1.34) when $u(x_3) = F x_3 + c$ for all $x_3 \in Q'$ and $b \in W^{1,2} (I; \mathbb{R}^3)$. The general case follows as in Steps 2 and 3 of Theorem 4.4 in [2]. We omit the details. □

In order to address the case $\gamma > 2$ we first recall the result obtained in [1], where
\[
\mathcal{I}_\varepsilon (u; A) := \int_{A \times I} W \left(D_{p}u \left| \frac{1}{\varepsilon} D_{3}u \right| \right) dx
\]
if $u \in W^{1,q} (\Omega; \mathbb{R}^3)$, and $\mathcal{I}_\varepsilon (u; A) := \infty$ otherwise. Fix a countable dense family $\{\theta_i\}_{i \in \mathbb{N}}$ in $L^{q'} (I; \mathbb{R}^3)$, where q' is the conjugate exponent of q. For $F \in \mathbb{R}^{2 \times 3}$, $b \in L^q (I; \mathbb{R}^3)$ we define
\[
Q \infty W (F | b) := \sup_n Q_n W (F | b) = \lim_{n \to \infty} Q_n W (F | b),
\]
where

$$Q_n W(F|b) := \inf_{\varphi \in \mathbb{K}} \left\{ \int_Q W(F + D_p \varphi(x))|b(x) + LD_3 \varphi(x)\right\} dx : L > 0, \varphi \in W^{1,q}(Q; \mathbb{R}^3), \varphi(\cdot, x_3) Q_1\text{-periodic for } L^1 \text{ a.e. } x_3, \quad (1.43)$$

$$\left| \int_Q LD_3 \varphi(x_\alpha, x_3) \theta_i(x_3) \right| dx \leq \frac{1}{n}, \quad i = 1, \ldots, n \right\}.$$ \hfill (1.44)

Remark F. If \(W \) satisfies \((H_1)'\), then a density argument shows that in the definition above it is possible to restrict admissible functions \(\varphi \in W^{1,q}(Q; \mathbb{R}^3) \) to functions \(\varphi \in C^\infty(Q; \mathbb{R}^3) \).

The main result in \([1]\) is that under condition \((H_1)'\),

$$I(u, b; A) := \inf \left\{ \liminf_{\varepsilon \to 0^+} I_\varepsilon(u_\varepsilon; A) : u_\varepsilon \in W^{1,q}(A \times I; \mathbb{R}^3), \quad u_\varepsilon \rightharpoonup u \text{ in } W^{1,q}(A \times I; \mathbb{R}^3), \quad \frac{1}{\varepsilon} D_3 u_\varepsilon \rightharpoonup b \text{ in } L^q(A \times I; \mathbb{R}^3) \right\}.$$ \hfill (1.44)

for all \((u, b) \in W^{1,q}(A; \mathbb{R}^3) \times L^q(A \times I; \mathbb{R}^3) \) and \(A \in A(\omega) \).

Next we show that the \(\Gamma^0 \)-liminf \(E_\gamma^- (u, b; A) \) coincides with \(I(u, b; A) \). This establishes that in the case \(\gamma > 2 \) the second-order perturbation plays no role.

Theorem G. Assume that \(\gamma > 2 \) and that condition \((H_1)'\) is satisfied. Then for all \((u, b) \in V^\gamma \) and \(A \in A(\omega) \),

$$E_\gamma^- (u, b; A) = \int_A Q_\infty W(D_p u(x_\alpha)|b(x_\alpha, \cdot)) \, dx_\alpha.$$ \hfill (1.44)

Proof. For any given sequence \(\{\varepsilon_n\} \), with \(\varepsilon_n \to 0^+ \), we extract a subsequence \(\{\varepsilon_{nk}\} \) such that

$$\Gamma^- \lim_{k \to \infty} E_{\varepsilon_{nk}}^\gamma (u, b; A) \text{ exists for all } (u, b) \in V^\gamma \text{ and for all } A' \in \mathcal{R}(\omega),$$

and we define the \(\Gamma^- \)lower limit

$$E_{\{\varepsilon_{nk}\}}^- (u, b; A) := \inf \left\{ \liminf_{k \to \infty} E_{\varepsilon_{nk}}^\gamma (u_k; A) : u_k \in W^{2,2}(\Omega; \mathbb{R}^3), \quad u_k \rightharpoonup u \text{ in } W^{1,q}(\Omega; \mathbb{R}^3), \quad \frac{1}{\varepsilon_{nk}} D_3 u_k \rightharpoonup b \text{ in } L^q(\Omega; \mathbb{R}^3) \right\}.$$ \hfill (1.44)

As in the case \(\gamma = 2 \), it suffices to show that

$$E_{\{\varepsilon_{nk}\}}^- (u, b; A) = \int_A Q_\infty W(D_p u(x_\alpha)|b(x_\alpha, \cdot)) \, dx_\alpha.$$ \hfill (1.44)

In the sequel, to simplify the notation, we write \(\varepsilon_k \) in place of \(\varepsilon_{nk} \).

Lower bound. In view of \((1.44) \) we deduce immediately that

$$E_{\{\varepsilon_k\}}^- (u, b; A) \geq I(u, b; A) = \int_A Q_\infty W(D_p u(x_\alpha)|b(x_\alpha, \cdot)) \, dx_\alpha.$$
Upper bound. We first prove the upper bound
\[E_{\mu_{
abla\iota}}(u, b; A) \leq \int_A Q_{\infty} W(D_p u(x_\alpha)|b(x_\alpha, \cdot)) \, dx_\alpha \] \tag{1.45}
when \(u(x_\alpha) = F x_\alpha + c \) for all \(x_\alpha \in Q' \) and for some \(F \in \mathbb{R}^{3 \times 2}, c \in \mathbb{R}^3, \) and \(b \in L^q(I; \mathbb{R}^3). \)
In this case the right-hand side reduces to \(Q_{\infty} W(F|b(\cdot)|) L^2(A) \).
In view of \((H_1)'\) we have that
\[Q_{\infty} W(F|b(\cdot)|) < \infty. \] \tag{1.46}
By definition of \(Q_{\infty} W(F|b(\cdot)|) \) (see (1.43) and Remark [E]) we may find admissible \(\varphi_n \in C^\infty(Q; \mathbb{R}^3) \) and \(L_n > 0 \) such that
\[\int_Q W(F + D_p \varphi_n(x)|b(x_3) + L_n D_3 \varphi_n(x)) \, dx \leq Q_{\infty} W(F|b(\cdot)| + \frac{1}{n}). \] \tag{1.47}
Note that in view of \((1.46)\) and \((H_1)'\) we have that
\[\sup_n \| (D_p \varphi_n|L_n D_3 \varphi_n) \|_{L^q(Q;\mathbb{R}^{3 \times 3})} < \infty. \] \tag{1.48}
Extend \(\varphi(\cdot, x_3) \) to \(\mathbb{R}^2 \) periodically with period \(Q' \) and extend \(b \) to \(\mathbb{R} \) by zero, and for \(x \in \Omega \) define
\[u_{k,n}(x_\alpha, x_3) := F x_\alpha + c + \varepsilon_k \int_0^{x_3} (b \ast \rho_k)(s) \, ds + L_n \varepsilon_k \varphi_n \left(\frac{x_\alpha}{L_n \varepsilon_k}, x_3 \right), \]
where
\[\rho_k(t) := \frac{1}{\delta_k} \rho \left(\frac{t}{\delta_k} \right), \quad \delta_k := \varepsilon_k^{-\frac{3}{2}}, \]
and \(\rho \in C^\infty_c(\mathbb{R}), \rho \geq 0, \) and \(\int_\mathbb{R} \rho(t) \, dt = 1. \) Note that
\[\lim_{n \to \infty} \lim_{k \to \infty} \| u_{k,n} - u \|_{L^q(\Omega;\mathbb{R}^3)} = 0. \] \tag{1.49}
Moreover, for \(x \in \Omega \) we have that
\[D_p u_{k,n}(x) = F + D_p \varphi_n \left(\frac{x_\alpha}{L_n \varepsilon_k}, x_3 \right), \]
\[\frac{1}{\varepsilon_k} D_3 u_{k,n}(x) = (b \ast \rho_k)(x_3) + L_n D_3 \varphi_n \left(\frac{x_\alpha}{L_n \varepsilon_k}, x_3 \right). \]
Since \(\varphi_n(\cdot, x_3) \) is \(Q' \)-periodic for \(L^1 \) a.e. \(x_3, \) by \((1.48)\) it follows that
\[\sup_{k,n \in \mathbb{N}} \left\| \left(D_p u_{k,n}, \frac{1}{\varepsilon_k} D_3 u_{k,n} \right) \right\|_{L^q(\Omega;\mathbb{R}^{3 \times 3})} < \infty. \] \tag{1.50}
For every \(i \in \mathbb{N}, \) by \((1.43),\)
\[\lim_{n \to \infty} \lim_{k \to \infty} \left| \int_\Omega \left(\frac{1}{\varepsilon_k} D_3 u_{k,n}(x) - b(x_3) \right) \, \theta_i(x_3) \, dx \right| \]
\[= \lim_{n \to \infty} \lim_{k \to \infty} \left| \int_\Omega \left((b \ast \rho_k)(x_3) - b(x_3) + L_n D_3 \varphi_n \left(\frac{x_\alpha}{L_n \varepsilon_k}, x_3 \right) \right) \, \theta_i(x_3) \, dx \right| \]
\[= \lim_{n \to \infty} \left| \int_{\omega \times Q'} L_n D_3 \varphi_n(y_\alpha, x_3) \, dy_\alpha \theta_i(x_3) \, dx \right| = 0, \] \tag{1.51}
where we have used the Riemann–Lebesgue Lemma and the fact that for \(n \geq i, \)
\[
\left| \int_Q L_n D_3 \varphi_n (x, x_3) \theta_i (x_3) \, dx \right| \leq \frac{1}{n}.
\]
Also by (1.37), \((H_1)^\prime\), the Lebesgue Dominated Convergence Theorem, and the Riemann-Lebesgue Lemma we have that
\[
\lim_{n \to \infty} \lim_{k \to \infty} \int_{A \times I} W \left(D_p u_{k,n} (x) \left| \frac{1}{\varepsilon_k} D_3 u_{k,n} (x) \right| \right) \, dx = 0.
\]

Finally,
\[
\lim_{n \to \infty} \lim_{k \to \infty} \int_{Q^I} \varepsilon_k^2 \left(\left| D_p^2 u_{k,n} \right|^2 + \frac{1}{\varepsilon_k} \left| D_3 u_{k,n} \right|^2 \right) \, dx = 0,
\]
where we have used the facts that \(\gamma > 2, \)
\[
\lim_{k \to \infty} \int_{Q^I} \left\| D^2 \varphi_n \left(\frac{x_3}{\varepsilon_k} \right) \right\|^2 \, dx = \mathcal{L}^2 (A) \int_{Q^I} \left\| D^2 \varphi_n (y, x_3) \right\|^2 \, dy \, dx,
\]
and
\[
\lim_{k \to \infty} \int_{Q^I} \varepsilon_k^{\gamma-2} \left| b \ast \rho_k (x_3) \right|^2 \, dx = 0,
\]
because
\[
\left\| b \ast \rho_k \right\|_{L^\infty (I; \mathbb{R}^3)} \leq C \left\| \rho_k \right\|_{L^\infty (I)} \left\| b \right\|_{L^q (I; \mathbb{R}^3)} \leq \frac{C}{\varepsilon_k^2} \left\| b \right\|_{L^q (I; \mathbb{R}^3)}.
\]
Hence, recalling (1.49), (1.50), (1.51), (1.52) and (1.53), we may find a diagonal sequence
\[
u_n := u_{k_n, n}
\]
such that \(u_n \to u \) in \(W^{1,q} (\Omega; \mathbb{R}^3) \) and \(\frac{1}{\varepsilon_{k_n}} D_3 u_n \to b \) in \(L^q (\Omega; \mathbb{R}^3) \) and
\[
\lim_{n \to \infty} E_{\varepsilon_{k_n}}^\gamma (u_n; A) \leq \mathcal{L}^2 (A) \mathcal{Q}_\infty \mathcal{W} (\mathcal{F} | b (\cdot)).
\]
Define
\[
\tilde{u}_k (x) := \begin{cases} u_{k_n, n} (x) \\ \mathcal{F} x_\alpha + c \ast k \int_0^{x_3} (b \ast \rho_k) (s) \, ds \end{cases} \quad \text{if } k = k_n \text{ for some } n \in \mathbb{N},
\]
otherwise.
Since the sequence \(\{ \tilde{u}_k \} \) is admissible for \(E_{\{\varepsilon_k\}}^{-}(u, b; A) \), we have
\[
E_{\{\varepsilon_k\}}^{-}(u, b; A) \leq \liminf_{n \to \infty} E_{\{\varepsilon_k\}}^{-}(u_n; A) \leq \mathcal{L}^2(\cdot) Q_{\infty} W(\mathcal{F}|b(\cdot)).
\]

Just as in the proof of Theorem \([\text{D}]\), it can be shown that for every \((u, b) \in \mathcal{V}^\gamma\), \(E_{\{\varepsilon_k\}}^{-}(u, b; \cdot) \) is the trace of a Radon measure absolutely continuous with respect to \(\mathcal{L}^2(\cdot) \). Therefore, to establish the inequality (1.45) for arbitrary \((u, b) \in \mathcal{V}^\gamma\) we may proceed as in the proof of Steps 2 and 3 of Theorem 4.4 in \([2]\). We omit the details. \(\Box \)

Acknowledgement. The authors would like to thank Vincent Millot for bringing to their attention the error in the proof of the original Theorem 3.1.

References