Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The Helmholtz equation in the exterior of slits in a plane with different impedance boundary conditions on opposite sides of the slits


Author: P. A. Krutitskii
Journal: Quart. Appl. Math. 67 (2009), 73-92
MSC (2000): Primary 35J05, 35J25, 45E05, 76Q05
DOI: https://doi.org/10.1090/S0033-569X-08-01117-4
Published electronically: December 22, 2008
MathSciNet review: 2495072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The boundary value problem for the Helmholtz equation is studied outside slits in a plane. The impedance boundary conditions are specified on the slits. In general, the impedance conditions may be different at different sides of each slit. In a particular case, the impedance conditions may be the same on the sides of each slit. It is proved that the classical solution to the problem exists, and it is unique. The integral representation for a solution to the problem is obtained in the form of potentials, the densities in which are uniquely determined from the uniquely solvable system of the Fredholm integral equations of the second kind and index zero.


References [Enhancements On Off] (What's this?)

  • 1. Krutitskii P.A. The Dirichlet problem for the Helmholtz equation outside slits in a plane. Comp. Maths. Math. Phys., 1994, v.34, No. 8/9, pp. 1073-1090. MR 1300397 (95f:35046)
  • 2. Krutitskii P.A. The Neumann problem for the Helmholtz equation outside slits in a plane. Comp. Maths. Math. Phys., 1994, v.34, No. 11, pp. 1421-1431. MR 1307611 (95i:45004)
  • 3. Krutitskii P.A. The mixed problem for the Helmholtz equation outside slits in a plane. Differential Equations, 1996, v.32, No.9, pp. 1153-1162. MR 1600844 (98m:35030)
  • 4. Krutitskii P.A. The modified jump problem for the Helmholtz equation. Ann. Univ. Ferrara, 2001, v. XLVII, pp. 285-296. MR 1897572 (2003a:35037)
  • 5. Krutitskii P.A., Kolybasova V.V. A generalization of the Neumann problem for the Helmholtz equation outside slits on the plane. Differential Equations, Vol. 41, No. 9, 2005, pp. 1213-1224. MR 2247253 (2007c:35024)
  • 6. Galishnikova T.N., Il'inskii A.S. Numerical methods in problems of diffraction. Moscow: Publishing house of Moscow State University, 1987 (in Russian). MR 898654 (88h:65230)
  • 7. Ih K.-D, Lee D.-J. Development of the direct boundary element method for thin bodies with general boundary condition. Journal of Sound and Vibration, 1997, v.202, pp. 361-373. MR 1454739 (98e:73144)
  • 8. Lifanov I.K. Method of singular integral equations and discrete vortices. VSP, Zeist, 1996. MR 1451377 (98g:65130)
  • 9. Muskhelishvili N.I. Singular integral equations. Nauka, Moscow, 1968 (in Russian). English translation: Noordhoff, Groningen, 1972. MR 0355494 (50:7968)
  • 10. Vladimirov V.S. Equations of mathematical physics. Nauka, Moscow, 1981 (in Russian). English translation: Mir Publishers, Moscow, 1984. MR 764399 (86f:00030)
  • 11. Smirnov V.I. A course of higher mathematics. V. IV, V. Gostehizdat, Moscow-Leningrad, 1951 (in Russian). English translation: Pergamon Press, Oxford, 1964. MR 0049255 (14:145e)
  • 12. Nikiforov A.F., Uvarov V.B. Special Functions of Mathematical Physics: A Unified Introduction With Applications. Nauka, Moscow, 1984 (in Russian). English translation: Birkhäuser, Basel, 1988. MR 799713 (86k:33001)
  • 13. Krutitskii P.A. An explicit solution of the pseudo-hyperbolic initial boundary value problem in a multiply connected region. Math. Meth. Appl. Sci., 1995, v.18, pp. 897-925. MR 1346665 (97d:76010a)
  • 14. Kolmogorov A.N., Fomin S.V. Elements of function theory and functional analysis. Nauka, Moscow, 1981 (in Russian). English translation: Dover, New York, 1999. MR 630899 (83a:46001)
  • 15. Mikhlin S.G. Course of mathematical physics. Nauka, Moscow, 1968 (in Russian). English translation: North-Holland Publishing Co., Amsterdam-London, 1970.
  • 16. Vinogradov I.M. (editor). Encyclopaedia of mathematics. V.1. Sovetskaya entsiklopediya, Moscow, 1977 (in Russian). English translation: Kluwer, Dordrecht, 1988. MR 470361 (81c:00008a)
  • 17. Krein S.G. (editor). Functional analysis. Nauka, Moscow, 1964 (in Russian). English translation: Wolters-Noordhoff Publishing, Groningen, 1972.
  • 18. Kantorovich L.V., Akilov G.P. Functional Analysis. Nauka, Moscow, 1984 (in Russian). English translation: Pergamon Press, Oxford, 1982. MR 664597 (83h:46002)
  • 19. Trenogin V.A. Functional Analysis. Nauka, Moscow, 1980 (in Russian). French translation: Mir Publishers, Moscow, 1985. MR 836334 (87g:46001)
  • 20. Krutitskii P.A. Boundary value problem for the Helmholtz equation outside slits in a plane with the boundary conditions of the third kind. Differential equations, 2007, v. 43, No. 10, pp.1387-1399.
  • 21. Wolfe P. An existence theorem for the reduced wave equation. Proc. Amer. Math. Soc., 1969, v.21, pp.663-666. MR 0265780 (42:689)
  • 22. Lifanov I.K., Poltavskii L.N., Vainikko G.M. Hypersingular integral equations and their applications. CRC Press, Boca Raton, 2004. MR 2053793 (2005e:45001)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35J05, 35J25, 45E05, 76Q05

Retrieve articles in all journals with MSC (2000): 35J05, 35J25, 45E05, 76Q05


Additional Information

P. A. Krutitskii
Affiliation: KIAM, Department 25, Miusskaya Square 4, Moscow 125047, Russia

DOI: https://doi.org/10.1090/S0033-569X-08-01117-4
Received by editor(s): July 1, 2007
Published electronically: December 22, 2008
Article copyright: © Copyright 2008 Brown University

American Mathematical Society