Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

The Euler-Poincaré theory of metamorphosis


Authors: Darryl D. Holm, Alain Trouvé and Laurent Younes
Journal: Quart. Appl. Math. 67 (2009), 661-685
MSC (2000): Primary 58E50
Published electronically: September 2, 2009
MathSciNet review: 2588229
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the pattern matching approach to imaging science, the process of ``metamorphosis'' is template matching with dynamical templates (Trouvé and Younes, Found. Comp. Math., 2005). Here, we recast the metamorphosis equations of that paper into the Euler-Poincaré variational framework of Holm, Marsden, and Ratiu, Adv. in Math., 1998 and show that the metamorphosis equations contain the equations for a perfect complex fluid (Holm, Springer, 2002). This result connects the ideas underlying the process of metamorphosis in image matching to the physical concept of an order parameter in the theory of complex fluids. After developing the general theory, we reinterpret various examples, including point set, image and density metamorphosis. We finally discuss the issue of matching measures with metamorphosis, for which we provide existence theorems for the initial and boundary value problems.


References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold.
    Sur un principe variationnel pour les écoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires.
    J. Mécanique, 5:29-43, 1966.
  • 2. R. Bajcsy and C. Broit.
    Matching of deformed images.
    In The 6th international conference in pattern recognition, pages 351-353, 1982.
  • 3. M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes.
    Computing large deformation metric mappings via geodesic flows of diffeomorphisms.
    Int. J. Comp. Vis., 61(2):139-157, 2005.
  • 4. F. L. Bookstein,
    Principal warps: Thin plate splines and the decomposition of deformations.
    IEEE Trans. PAMI, 11(6):567-585, 1989.
  • 5. V. Camion and L. Younes.
    Geodesic interpolating splines.
    In M. Figueiredo, J. Zerubia, and A. K. Jain, editors, EMMCVPR 2001, volume 2134 of Lecture notes in computer sciences. Springer, 2001.
  • 6. Ming Chen, Si-Qi Liu, and Youjin Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys. 75 (2006), no. 1, 1–15. MR 2207043, 10.1007/s11005-005-0041-7
  • 7. Paul Dupuis, Ulf Grenander, and Michael I. Miller, Variational problems on flows of diffeomorphisms for image matching, Quart. Appl. Math. 56 (1998), no. 3, 587–600. MR 1632326
  • 8. Gregorio Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A 39 (2006), no. 2, 327–342. MR 2198963, 10.1088/0305-4470/39/2/004
  • 9. L. Garcin and L. Younes.
    Geodesic image matching: A wavelet based energy minimization scheme.
    In Proceedings of EMMCVPR 2005, volume 3757 of Lecture Notes in Computer Science, pages 349-364, 2005.
  • 10. J. Glaunès, A. Trouvé, and L. Younes.
    Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching.
    In Proceedings of CVPR'04, 2004.
  • 11. Joan Glaunès, Marc Vaillant, and Michael I. Miller, Landmark matching via large deformation diffeomorphisms on the sphere, J. Math. Imaging Vision 20 (2004), no. 1-2, 179–200. Special issue on mathematics and image analysis. MR 2049789, 10.1023/B:JMIV.0000011326.88682.e5
  • 12. A. Guimon, A. Roche, N. Ayache, and J. Meunier.
    Three-dimensional brain warping using the demons algorithm and adaptive intensity corrections.
    Technical report, INIRIA Sophia-Antipolis, 1999.
  • 13. Darryl D. Holm, Euler-Poincaré dynamics of perfect complex fluids, Geometry, mechanics, and dynamics, Springer, New York, 2002, pp. 113–167. MR 1919828, 10.1007/b97525
  • 14. Darryl D. Holm, Jerrold E. Marsden, and Tudor S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998), no. 1, 1–81. MR 1627802, 10.1006/aima.1998.1721
  • 15. S. Joshi, A. Klassen, E. Srivastava, and I. Jermyn.
    Removing shape-preserving transformations in square-root elastic (sre) framework for shape analysis of curves.
    In Springer, editor, Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2007, number 4679 in Lecture Notes in Computer Science, pages 387-398, 2007.
  • 16. Sarang C. Joshi and Michael I. Miller, Landmark matching via large deformation diffeomorphisms, IEEE Trans. Image Process. 9 (2000), no. 8, 1357–1370. MR 1808275, 10.1109/83.855431
  • 17. P. A. Kuz′min, On two-component generalizations of the Camassa-Holm equation, Mat. Zametki 81 (2007), no. 1, 149–152 (Russian); English transl., Math. Notes 81 (2007), no. 1-2, 130–134. MR 2333873, 10.1134/S0001434607010142
  • 18. Jerrold E. Marsden and Tudor S. Ratiu, Introduction to mechanics and symmetry, 2nd ed., Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1999. A basic exposition of classical mechanical systems. MR 1723696
  • 19. Robert I. McLachlan and Stephen R. Marsland, The Kelvin-Helmholtz instability of momentum sheets in the Euler equations for planar diffeomorphisms, SIAM J. Appl. Dyn. Syst. 5 (2006), no. 4, 726–758 (electronic). MR 2274496, 10.1137/060655808
  • 20. M. I. Miller and L. Younes.
    Group action, diffeomorphism and matching: A general framework.
    Int. J. Comp. Vis, 41:61-84, 2001.
    (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohio-state.edu/ szhu/SCTV99.html).
  • 21. W. Mio, A. Srivastava, and S. Joshi.
    On the shape of plane elastic curves.
    Technical report, Department of Mathematics, Florida State Univ., 2005.
  • 22. A. Qiu, L. Younes, and M. I. Miller,
    Intrinsic and extrinsic analysis in computational anatomy.
    Neuroimage, 2007.
    In press.
  • 23. A. W. Toga, editor.
    Brain warping.
    Academic Press, 1999.
  • 24. A. Trouvé.
    Diffeomorphism groups and pattern matching in image analysis.
    Int. J. of Comp. Vis., 28(3):213-221, 1998.
  • 25. A. Trouvé and L. Younes.
    Diffeomorphic matching in 1d: Designing and minimizing matching functionals.
    In D. Vernon, editor, Proceedings of ECCV 2000, 2000.
  • 26. Alain Trouvé and Laurent Younes, On a class of diffeomorphic matching problems in one dimension, SIAM J. Control Optim. 39 (2000), no. 4, 1112–1135 (electronic). MR 1814269, 10.1137/S036301299934864X
  • 27. Alain Trouvé and Laurent Younes, Local geometry of deformable templates, SIAM J. Math. Anal. 37 (2005), no. 1, 17–59 (electronic). MR 2176922, 10.1137/S0036141002404838
  • 28. Alain Trouvé and Laurent Younes, Metamorphoses through Lie group action, Found. Comput. Math. 5 (2005), no. 2, 173–198. MR 2149415, 10.1007/s10208-004-0128-z
  • 29. M. Vaillant and J. Glaunès.
    Surface matching via currents.
    In Springer, editor, Proceedings of Information Processing in Medical Imaging (IPMI 2005), number 3565 in Lecture Notes in Computer Science, 2005.
  • 30. M. Vaillant, M. I. Miller, A. Trouvé, and L. Younes.
    Statistics on diffeomorphisms via tangent space representations.
    Neuroimage, 23(S1):S161-S169, 2004.
  • 31. L. Wang, M. F. Beg, J. T. Ratnanather, C. Ceritoglu, L. Younes, J. Morris, J. Csernansky, and M. I. Miller,
    Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type.
    IEEE Transactions on Medical Imaging, 26(462-470), 2006.
  • 32. Laurent Younes, Computable elastic distances between shapes, SIAM J. Appl. Math. 58 (1998), no. 2, 565–586 (electronic). MR 1617630, 10.1137/S0036139995287685
  • 33. Laurent Younes, Peter W. Michor, Jayant Shah, and David Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), no. 1, 25–57. MR 2383560, 10.4171/RLM/506

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 58E50

Retrieve articles in all journals with MSC (2000): 58E50


Additional Information

Darryl D. Holm
Affiliation: Department of Mathematics, Imperial College London SW7 2AZ, United Kingdom and Computer and Computational Science, Los Alamos National Laboratory, MS D413 Los Alamos, New Mexico 87545
Email: d.holm@ic.ac.uk, dholm@lanl.gov

Alain Trouvé
Affiliation: CMLA (CNRS, URA 1611), Ecole Normale Supérieure de Cachan, 61, avenue du Président Wilson, F-94 235 Cachan Cedex
Email: trouve@cmla.ens-cachan.fr

Laurent Younes
Affiliation: Center for Imaging Science, The Johns Hopkins University, 3400 N-Charles Street, Baltimore, Maryland 21218-2686
Email: laurent.younes@jhu.edu

DOI: http://dx.doi.org/10.1090/S0033-569X-09-01134-2
Keywords: Groups of diffeomorphisms, EPDiff, image registration, shape analysis, deformable templates
Received by editor(s): April 27, 2008
Published electronically: September 2, 2009
Additional Notes: The work of D. D. Holm was partially supported by the US Department of Energy, Office of Science, Applied Mathematical Research, and the Royal Society of London Wolfson Research Merit Award. D. D. Holm is grateful for stimulating discussions with C. Tronci.
The work of Laurent Younes was partially supported by NSF DMS-0456253.
Article copyright: © Copyright 2009 Brown University


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2016 Brown University
Comments: qam-query@ams.org
AMS Website