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Abstract. We review results on the spherically symmetric, asymptotically flat Ein-

stein-Vlasov system. We focus on a recent result where we found explicit conditions on the

initial data which guarantee the formation of a black hole in the evolution. Among these

data there are data such that the corresponding solutions exist globally in Schwarzschild

coordinates. We put these results into a more general context, and we include arguments

which show that the spacetimes we obtain satisfy the weak cosmic censorship conjecture

and contain a black hole in the sense of suitable mathematical definitions of these concepts

which are available in the literature.
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1. Some general remarks on gravitational collapse. We begin these notes with

some general, informal, and in part historical remarks on concepts related to the phe-

nomenon of relativistic gravitational collapse.

Shortly after A. Einstein published his theory of general relativity [24, 25], K. Schwarz-

schild showed [49] that the following metric solves the corresponding field equations in

vacuum:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (1.1)

Here M > 0 is a parameter, t ∈ R is a time coordinate, the spacetime is spherically

symmetric, and the polar angles θ and ϕ coordinatize the surfaces of constant t and

r > 0. The latter are the orbits of SO(3) which acts isometrically on this spacetime, and

4πr2 is the area of these surfaces. The part of this metric with r > 2M can be thought

of as representing the gravitational field outside a static, spherically symmetric body of

mass M and radius larger than 2M . With this interpretation in mind, the radii r = 2M

and r = 0, where the metric looks singular, lie within the matter where the metric does

not apply anyway so that one need not worry about this singular behavior. However,

using the new time coordinate

t̃ := t+ r∗, where r∗ := r + 2M ln(r − 2M), (1.2)

the metric takes the form

ds2 = −
(
1− 2M

r

)
dt̃

2
+ 2dt̃ dr + r2(dθ2 + sin2 θdϕ2), (1.3)

which extends smoothly through r = 2M ; i.e., r = 2M is only a coordinate singularity

in (1.1). On the other hand, the so-called Kretschmann scalar

K := RαβγδRαβγδ (1.4)

derived from the Riemann curvature tensor R δ
αβγ blows up like M2/r6 as r → 0; Greek

indices are running from 0 to 3 and are summed over if they appear as both lower and

upper indices in the same expression. Since K is a scalar quantity, its values do not

change under a change of coordinates. The singularity at r = 0 is a genuine feature of

the Schwarzschild spacetime which cannot be cured away by a more judicious choice of

coordinates; it is a spacetime singularity, where the structure of spacetime itself breaks

down. Although the surface r = 2M is not singular, there is something special about



GRAVITATIONAL COLLAPSE FOR THE EINSTEIN-VLASOV SYSTEM 19

it, as can be seen from (1.3). The line r = 2M, θ = π/2, ϕ = 0 represents the world

line of a massless particle (a photon) moving radially outward, away from the origin.

Since no material particle can move faster than light, particles and photons can only

pass inward through the surface r = 2M , but can never leave the region r < 2M once

they are inside. Such a surface was later termed an event horizon. One should keep in

mind from the above that by switching to different coordinates one was able to extend

the spacetime beyond the region covered by Schwarzschild coordinates, even though in

the latter coordinates the metric blows up at the boundary r = 2M .

While the part with r > 2M of the Schwarzschild metric was successfully used to

explain for example the perihelion precession of Mercury in the solar system, it was

argued that no conceivable physical process could compress an amount of matter so

much that its mass M would all be contained inside the region r < 2M , and so the

irritating behavior at the surface r = 2M and also the breakdown of the geometry of

spacetime at r = 0 was discarded as unphysical.

But in 1939, J. R. Oppenheimer and H. Snyder [32] constructed a semi-explicit, time-

dependent solution of the Einstein field equations where a homogeneous spherically sym-

metric ball of dust, i.e., of a fluid with pressure zero, collapses until all the mass is within

the region r < 2M , and it continues to collapse until the scalar curvature of spacetime

blows up at the center of symmetry. Although this proved that an event horizon can

evolve out of completely regular initial data, several decades passed before such structures

became accepted as potentially relevant from the physics point of view and J. A. Wheeler

coined the name black hole for them.

Today, there are many astronomical observations for which the currently best explana-

tion involves a black hole. For example, black holes of the order of 106–109 solar masses

are believed to reside in the centers of many galaxies, including the Milky Way. In spite

of the increasing relevance of black holes as real astrophysical objects, many important

basic questions about gravitational collapse are still open. The most prominent of these

is the cosmic censorship conjecture.

To see the issue here, we notice that in the Oppenheimer-Snyder example, the space-

time singularity which forms at r = 0 is hidden behind the event horizon so that it cannot

be seen or in any other way be experienced by observers outside the event horizon. The

same is true for the spacetime singularity in the Schwarzschild spacetime. In the 1960s,

R. Penrose [33] proved that a spacetime singularity forms in the gravitational collapse

of a not necessarily symmetric star made up of “reasonable” matter, i.e., matter which

satisfies the strong energy condition, provided a closed trapped surface forms. This is

a closed, two-dimensional, spacelike surface with the property that the null geodesics,

i.e., the light rays, which start perpendicular to the surface decrease its surface area

both when followed inward and outward from the surface; for a precise definition, cf. [51,

9.5]. The surfaces of constant t̃ and r with r < 2M in (1.3) are trapped, and we note

that Schwarzschild coordinates cannot cover regions of spacetime which contain trapped

surfaces. Since trapped surfaces are stable under small perturbations of the spacetime,

Penrose’s result showed that the formation of spacetime singularities is not restricted

to spherically symmetric, especially constructed or isolated examples but is a genuine,
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stable feature of spacetimes. However, his result gives little information about the geo-

metric structure of a spacetime with such a singularity; in particular, it does not provide

an event horizon surrounding the singularity. The existence of a naked singularity, which

by definition is not hidden behind an event horizon, would violate predictability as it

would not be possible to predict from initial data what an observer would see if he could

observe a singularity. Hence Penrose formulated the cosmic censorship conjecture which

demands that any singularity arising in the gravitational collapse of generic regular initial

data is hidden behind an event horizon; exceptional data leading to naked singularities

are required to form a “null set” in some suitable sense. The above is an informal state-

ment of the so-called weak cosmic censorship conjecture [51, 12.1]. It would in particular

guarantee that predictability holds at least in the region outside the event horizon. In

the strong version, no observer is allowed to observe a singularity. For a mathematical

definition and discussion of the weak and strong cosmic censorship conjectures, we refer

to [20].

An important example where naked singularities do form for a null set of data while

cosmic censorship holds for generic data is the spherically symmetric Einstein-scalar field

system which was investigated by D. Christodoulou; cf. [18, 19]. A massless scalar field

or dust as employed by Oppenheimer and Snyder and later also by Christodoulou [13] are

but two possibilities for modeling matter in gravitational collapse. In the present notes

we discuss results where a collisionless gas as described by the Vlasov equation is used

as matter model, a model which we consider particularly suitable for this purpose from

a mathematics point of view and which is well motivated from an astrophysics point of

view; cf. [11].

2. The Einstein-Vlasov system. Consider a smooth spacetime manifold M equip-

ped with a Lorentzian metric gαβ with signature (− + + +). The Einstein equations

read

Gαβ = 8πTαβ , (2.1)

where Gαβ is the Einstein tensor, a nonlinear second-order differential expression in the

metric gαβ , and Tαβ is the energy-momentum tensor given by the matter content (or

other fields) of the spacetime. To obtain a closed system, the field equations (2.1) have

to be supplemented by evolution equation(s) for the matter and the definition of Tαβ in

terms of the matter and the metric.

We choose as a matter model a collisionless gas. In order to write down an evolution

equation for the number density of the particles on phase space we recall that the world

line of a single test particle on M obeys the geodesic equation

ẋα = pα, ṗα = −Γα
βγp

βpγ , (2.2)

where xα denotes general coordinates on M , pα are the corresponding canonical mo-

menta, Γα
βγ are the Christoffel symbols induced by the metric gαβ , and the dot indicates

differentiation with respect to an affine parameter, i.e., with respect to proper time along

the world line of the particle. We assume that all the particles have the same rest mass,

normalized to unity, and move forward in time. Hence, their number density f is a
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nonnegative function supported on the mass shell

PM :=
{
gαβp

αpβ = −1, p0 > 0
}
,

a submanifold of the tangent bundle TM of the spacetime manifold M which is invariant

under the geodesic flow. Letting Latin indices range from 1 to 3 we use coordinates

(t, xa) with zero shift, which implies that g0a = 0. On the mass shell PM the variable

p0 then becomes a function of the remaining variables (t, xa, pb):

p0 =
√
−g00

√
1 + gabpapb. (2.3)

Since the particles move like test particles in the given metric, their number density

f = f(t, xa, pb) is constant along the geodesics and it satisfies the Vlasov equation

∂tf +
pa

p0
∂xaf − 1

p0
Γa
βγp

βpγ ∂paf = 0. (2.4)

The energy-momentum tensor is given by

Tαβ =

∫
pαpβf |g|1/2 dp1dp2dp3

−p0
, (2.5)

where |g| denotes the modulus of the determinant of the metric, and indices are raised

and lowered using the metric, i.e., pα = gαβp
β. The system (2.1), (2.4), (2.5) is the

Einstein-Vlasov system in general coordinates. An introduction to relativistic kinetic

theory and the Einstein-Vlasov system can be found in [1, 47]. The Vlasov equation is

widely used as a matter model in astrophysics to describe galaxies or globular clusters

[11]. Such systems are usually dealt with as isolated systems in an otherwise empty

universe, which in our context means that the spacetime is asymptotically flat.

Let us for a moment consider a distribution function of the form

f(t, xa, pb) = −u0 |g|−1/2ρ(t, xa) δ(pb − ub(t, xa)), (2.6)

where ρ = ρ(t, xa) is a scalar function on spacetime, δ is the Dirac δ-distribution, and

uβ = uβ(t, xa) takes values in the mass shell so that u0 is determined by ub; cf. (2.3).

Then the macroscopic quantities ρ and ua together with the metric satisfy the Einstein-

Euler system for a perfect fluid with pressure zero, a matter model referred to as dust

in the first section and used by Oppenheimer and Snyder; ρ is the mass-energy density

of the dust-fluid and uβ its four-velocity. It should be stressed that although formally

the Einstein-dust system can be viewed as a special case of the Einstein-Vlasov system,

we use the term Vlasov matter exclusively for genuine (and usually smooth) distribution

functions on the mass shell PM .

Before we proceed a few advantageous features of the Einstein-Vlasov system are

worth pointing out. Firstly, if the metric and therefore the Christoffel symbols are given,

the evolution equation for the matter, i.e., the Vlasov equation, does not produce any

singularities by itself; it is, for a given metric, indeed a linear first-order conservation

law which can be solved by the method of characteristics. This situation is different

if the matter is described as a fluid, and singularities induced by the matter model

can prevent one from analyzing the formation of event horizons and true spacetime

singularities. Secondly, in the Newtonian limit the Einstein-Vlasov system turns into the

Vlasov-Poisson system [40, 46] for which there is a global existence result for general,
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regular data; cf. [30, 34, 38]. Hence any singularity in the solutions of the Einstein-

Vlasov system should have its origin in some relativistic effect; for a fluid this is again

different. Beside these mathematical properties the Vlasov equation also has a clear

physical interpretation and motivation, as pointed out above.

The questions raised in the previous section are at present out of reach of a rigor-

ous mathematical treatment, unless simplifying symmetry assumptions are made. Hence

we will consider the Einstein-Vlasov system under the assumption of spherical symme-

try. Notice that the investigations which we cited above and where dust or a massless

scalar field are used as matter models employ the same symmetry assumption. We use

Schwarzschild coordinates (t, r, θ, ϕ) and write the metric in the form

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2(dθ2 + sin2 θ dϕ2);

as to the range and meaning of these coordinates, we refer to the previous section; cf.

(1.1). Asymptotic flatness means that the metric quantities λ and µ have to satisfy the

boundary conditions

lim
r→∞

λ(t, r) = lim
r→∞

µ(t, r) = 0 (2.7)

so that as r → ∞ the metric approaches the flat Minkowski metric, written in polar

coordinates. In addition we impose the boundary condition

λ(t, 0) = 0 (2.8)

in order to guarantee a regular center. Since polar coordinates sometimes induce artificial

coordinate singularities at r = 0, it is convenient to introduce the corresponding Cartesian

coordinates

x = (x1, x2, x3) = r(sin θ cosϕ, sin θ sinϕ, cos θ).

If p = (p1, p2, p3) denotes the corresponding canonical momenta, then

p0 = −eµ
√
1 + |p|2(e2λ − 1) +

(x · p
r

)2

,

where |p|2 = (p1)2+(p2)2+(p3)2 and x·p = x1p1+x2p2+x3p3. Since this quantity appears

in the formula for the components of the energy-momentum tensor, which in turn appear

as source terms in the field equations, it is preferable to use the noncanonical momentum

variables

va = pa + (eλ − 1)
x · p
r

xa

r
, a = 1, 2, 3.

In these variables,

p0 = −eµ
√
1 + |v|2,

and f is spherically symmetric iff

f(t, x, v) = f(t, Ax,Av), x, v ∈ R
3, A ∈ SO (3).
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The spherically symmetric, asymptotically flat Einstein-Vlasov system takes the following

form:

∂tf + eµ−λ v√
1 + |v|2

· ∂xf −
(
∂tλ

x · v
r

+ eµ−λ∂rµ
√

1 + |v|2
) x

r
· ∂vf = 0, (2.9)

e−2λ(2r∂rλ− 1) + 1 = 8πr2ρ, (2.10)

e−2λ(2r∂rµ+ 1)− 1 = 8πr2p, (2.11)

∂tλ = −4πreλ+µj, (2.12)

e−2λ

(
∂2
rµ+ (∂rµ− ∂rλ)(∂rµ+

1

r
)

)
− e−2µ

(
∂2
t λ+ ∂tλ (∂tλ− ∂tµ)

)
= 4πq, (2.13)

where

ρ(t, r) = ρ(t, x) =

∫ √
1 + |v|2f(t, x, v) dv, (2.14)

p(t, r) = p(t, x) =

∫ (x · v
r

)2

f(t, x, v)
dv√

1 + |v|2
, (2.15)

j(t, r) = j(t, x) =

∫
x · v
r

f(t, x, v)dv, (2.16)

q(t, r) = q(t, x) =

∫ ∣∣∣∣x× v

r

∣∣∣∣
2

f(t, x, v)
dv√

1 + |v|2
. (2.17)

For a detailed derivation of these equations we refer to [37]. It should be noted that in

this formulation no raising and lowering of indices using the metric appears anywhere.

It is a completely explicit system of PDEs, where x, v ∈ R
3, x · v denotes the Euclidean

scalar product, and |v|2 = v · v.
For the spherically symmetric Einstein-dust equations, Christodoulou [13] showed that

cosmic censorship is violated. Indeed, not even a suitable smallness condition on the

initial data prevents the formation of naked singularities for dust. As we shall see in the

next section this is different for the Vlasov matter model, provided we have a genuine,

smooth distribution function with respect to x and v.

The goal for the spherically symmetric, asymptotically flat Einstein-Vlasov system is

to show that for all (or at least for all generic) regular initial data the corresponding

solution is either global in the sense that the spacetime is singularity-free or the solution

undergoes a gravitational collapse in which a spacetime singularity forms which is hidden

behind an event horizon. Of course the ultimate goal would be to prove this for gen-

eral, not necessarily symmetric data, but let’s be modest for now. So far all analytical

and numerical results support the conjecture that the above is indeed true and that in

particular the spherically symmetric, asymptotically flat Einstein-Vlasov system satisfies

the weak cosmic censorship conjecture. An existence result for singularity-free solutions

for restricted, small data has been known for some time and is reviewed in the next

section. A class of data which lead to gravitational collapse as described above has been

established more recently, and this result is discussed in Section 4.



24 H. ANDRÉASSON, M. KUNZE, AND G. REIN

3. Local and global existence results. In this section we review a number of

results from the literature for the spherically symmetric, asymptotically flat Einstein-

Vlasov system. They serve as either background or counterparts to the results on gravi-

tational collapse, which we state and discuss in the next section.

3.1. Local existence and continuation. Due to our choice of v as a noncanonical mo-

mentum variable, the system (2.9)–(2.17) has the following nice feature. If a distribution

function f is given, then the source terms ρ, p, j, and q can be computed from it without

reference to the metric. Given ρ and observing the boundary condition (2.8) the field

equation (2.10) can be integrated to yield

e−2λ = 1− 2m

r
, (3.1)

where the quasi-local mass m is given by

m(t, r) := 4π

∫ r

0

ρ(t, η) η2dη. (3.2)

Given p and λ the field equation (2.11) together with the boundary condition (2.7)

determines µ:

µ(t, r) = exp

(
−

∫ ∞

r

e2λ(t,η)
(
m(t, η)

η2
+ 4πηp(t, η)

)
dη

)
. (3.3)

Finally, if both λ and µ are given and sufficiently regular, then f is determined from its

initial data by the method of characteristics:

f(t, x, v) =
◦
f ((X,V )(0, t, x, v)), (3.4)

where (X,V )(s, t, x, v) is the solution of the characteristic system

ẋ = eµ−λ v√
1 + |v|2

, v̇ = −
(
∂tλ

x · v
r

+ eµ−λ∂rµ
√
1 + |v|2

) x

r
(3.5)

of the Vlasov equation (2.9) satisfying (X,V )(t, t, x, v) = (x, v), and
◦
f is the prescribed

data at time t = 0. Notice that the characteristics are now parameterized by coordinate

time instead of proper time as in (2.2).

The iterative scheme indicated above can be used to prove a local existence and

uniqueness theorem together with an extension criterion.

Theorem 3.1. Let
◦
f ∈ C1

c (R
6) be nonnegative, spherically symmetric, and such that for

the induced quasi-local mass,

2
◦
m(r)/r < 1, r > 0. (3.6)

Then there exists a unique regular solution f of the asymptotically flat, spherically

symmetric Einstein-Vlasov system with f(0) =
◦
f on a maximal interval of existence

[0, T [ with T > 0. If

sup
{
|v| | (t, x, v) ∈ supp f, 0 ≤ t < T

}
< ∞,

then T = ∞.
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This result was first established in [39]; see also [37]. Some comments are in order.

Functions in C1
c (R

6) are by definition continuously differentiable and compactly sup-

ported. A solution is called regular if the derivatives which appear in the system exist in

the classical sense and are continuous; for the precise definition, we refer to [37].

The restriction (3.6) on the initial data is necessary in view of (3.1) because that

equation defines λ only as long as 2m(t, r)/r < 1, so we have to require this for the

initial data. This is related to the fact that, as noted in the first section, Schwarzschild

coordinates cannot cover regions of spacetime which contain trapped surfaces.

A local existence and uniqueness result for the Einstein-Vlasov system without a

symmetry assumption was established by Y. Choquet-Bruhat [12]. However, in order

to extend a local solution to a global one based on the latter result, one would have

to control high-order Sobolev norms of the solution. The extension criterion provided

in Theorem 3.1 is much less demanding and forms a more convenient starting point for

investigating global properties of solutions.

The major simplification of the system due to the symmetry assumption is the fact

that for given source terms the metric is completely determined by the two constraint

equations (2.10) and (2.11) which are ordinary differential equations in r. The metric

has no independent degrees of freedom, and this rules out gravitational radiation, much

like the Vlasov-Maxwell system being reduced to the Vlasov-Poisson system if spherical

symmetry is assumed. But if λ is defined by (3.1), then it becomes rather unpleasant to

control ∂tλ which appears in the Vlasov equation and to make sure that the condition

2m(t, r)/r < 1 is preserved. In [37], this was resolved by considering first a modified

system where (2.13) was left out and ∂tλ was replaced by a quantity λ̃ defined by (2.12).

Then one can show a posteriori that indeed ∂tλ = λ̃ and that (2.13) holds as well.

Equation (2.12) can then be used to control ∂tλ and therefore λ in terms of

P (t) := sup
{
|v| | (s, x, v) ∈ supp f, 0 ≤ s ≤ t

}
;

notice that by (3.4) the function f(t) is bounded so that the source terms ρ, p, j, q are

bounded by powers of P .

Equation (2.13) also has its role to play. To establish the convergence of the itera-

tive scheme one needs uniform bounds on certain second-order derivatives of the metric

coefficients. But since in (2.10)–(2.12) the first-order derivatives depend in a pointwise

way on the source terms, it seems that one needs to control derivatives of these source

terms. In the corresponding results for the Vlasov-Poisson or Vlasov-Maxwell systems

one exploits the fact that the field quantities depend on the source terms through spatial

or spacetime integrals. The corresponding field equations are smoothing; cf. [10, 26, 38].

Here the field equation (2.13) provides this smoothing effect, because it turns out that

in order to control the derivatives of the characteristic flow with respect to the initial

data only a certain combination of second-order derivatives of the metric coefficients is

needed, and this combination is precisely the one which appears in (2.13) and is therefore

controlled by q.

In the context of these arguments and also in what follows some further information

is useful. By (2.10) and (2.11),

∂rµ+ ∂rλ ≥ 0,
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and together with the boundary condition (2.7) and (3.1), this implies that

µ− λ ≤ µ+ λ ≤ 0. (3.7)

Solutions of the Einstein-Vlasov system satisfy the following conservation laws. The

Vlasov equation implies that the number of particles

N =

∫∫
eλ(t,r)f(t, x, v) dv dx (3.8)

is conserved. More importantly, if we observe that j is for each fixed time t compactly

supported so that by (2.12), ∂tλ(t, r) = 0 for r sufficiently large, we conclude from (3.1)

that the ADM mass

M = lim
r→∞

m(t, r) =

∫∫ √
1 + |v|2f(t, x, v) dv dx (3.9)

is conserved.

3.2. Global existence for small data. A natural question when investigating a nonlinear

system of PDEs is whether small initial data lead to global solutions which disperse. As

mentioned above, no such smallness condition can be formulated for the at least formally

closely related Einstein-dust system, cf. [13], but for true Vlasov matter such a global

result for small data does exist.

Theorem 3.2. For all R > 0 there exists ε > 0 such that if f is a maximal solution

of the asymptotically flat, spherically symmetric Einstein-Vlasov system with f(0) =
◦
f

satisfying
◦
f (x, v) = 0 for |x|+ |v| > R

and
||

◦
f ||∞ < ε,

then the solution exists globally in t. Moreover, the solution disperses in the sense that

||ρ(t)||∞ ≤ C(1 + |t|)−3, t ∈ R,

and the spacetime is geodesically complete.

This result was first proven in [39]; see also [37, 47]. Similar results were known

both for the Vlasov-Poisson and the Vlasov-Maxwell system; cf. [9, 27, 38]. The basic

dispersive mechanism in the system can be seen as follows. By (3.4) and the change of

variables formula,

ρ(t, x) =

∫ √
1 + |v|2

◦
f ((X,V )(0, t, x, v)) dv

=

∫ √
1 + |v|2

◦
f (X,V (0, t, x, v))

∣∣∣∣det
(
∂X(0, t, x, v)

∂v

)∣∣∣∣
−1

dX.

Now in the flat Minkowski case, λ = µ = 0, X(0, t, x, v) = x − t v/
√
1 + |v|2, and the

determinant above grows like t3. If the field terms satisfy suitable decay conditions,

this turns out to remain correct. The decay of ρ and the other source terms in turn

implies decay for the field terms, and a bootstrap argument gives the result. Here it

again becomes important that a certain combination of second-order derivatives of the

metric coefficients can be controlled via the source terms by the field equation (2.13).
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The above argument proves that the solution is global with respect to the chosen time

coordinate. However, this does not automatically imply that the maximal Cauchy devel-

opment of the corresponding initial data is singularity-free. By definition, a spacetime

contains a singularity if there exists a timelike or null geodesic, i.e., a world line of a

particle or a photon, whose maximally extended domain of affine parameter, i.e., proper

time in the case of a particle, is not the whole real line. The geometrically invariant,

coordinate-free characterization of a singularity-free or global spacetime is therefore that

all timelike and null geodesics exist on the whole real line. In the course of the proof of

the above bootstrap argument, one obtains sufficient decay information on the Christoffel

symbols to conclude that indeed all maximally extended geodesics in this spacetime are

complete, i.e., exist on the whole real line.

A mechanism which also leads to global existence but is different from dispersion

induced by small data is that initially all the particles move outward sufficiently fast to

prevent recollapse; cf. [5]. For a collisionless gas of massless particles a result analogous

to Theorem 3.2 has been shown in [22].

3.3. Possible breakdown must occur at the center first. The next question is whether

large data lead to a breakdown of the solution. It is important to realize that the fact

that, as shown in the next section, certain data do lead to gravitational collapse and the

formation of black holes does certainly not rule out the possibility that in Schwarzschild

coordinates all solutions of the spherically symmetric, asymptotically flat Einstein-Vlasov

system are global. If the weak cosmic censorship conjecture holds for this system, then,

physically speaking, an observer who is very far away (ideally at spatial infinity) should

not be able to observe the singularity so that for him the universe should look singularity-

free, and in this context one should note that Schwarzschild time asymptotically coincides

with the proper time measured by such an observer. So far, all numerical simulations and

analytical results support the conjecture that all solutions are global in Schwarzschild

time. In all cases where a gravitational collapse was simulated numerically the solution

did not seem to break down in finite Schwarzschild time and an event horizon did form;

cf. [7, 31, 44]. In the next section we discuss a recent analytical result which shows that,

at least for a certain class of data, solutions do again exist globally in Schwarzschild time,

but they do undergo a gravitational collapse and form a black hole. In the context of

that result it is important to know that if a solution should develop a singularity in finite

Schwarzschild time, then this must happen at the center first.

Theorem 3.3. Let f be a regular solution of the spherically symmetric, asymptotically

flat Einstein-Vlasov system on a time interval [0, T [. Suppose that there exists an open

neighborhood U of the point (T, 0) such that

sup{|v| | (t, x, v) ∈ supp f ∩ (U × R
3)} < ∞. (3.10)

Then f extends to a regular solution on [0, T ′[ for some T ′ > T .

This theorem was established in [43]. In order to explain the mechanism behind this,

we introduce coordinates on the mass shell which are adapted to the symmetry:

r = |x|, w =
x · v
r

, L = |x× v|2.
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Spherical symmetry of f implies that, by abuse of notation,

f(t, x, v) = f(t, r, w, L).

One should think of w as the noncanonical radial momentum and L as the modulus of

angular momentum squared of a particle. Due to spherical symmetry, L is conserved

along characteristics, and the characteristic system written in (r, w, L) takes the form

ṙ = eµ−λw

E
, (3.11)

ẇ = −
(
∂tλw + eµ−λ∂rµE − eµ−λ L

r3E

)
, (3.12)

L̇ = 0, (3.13)

where

E = E(r, w, L) :=
√
1 + w2 + L/r2 = eµp0.

The source terms take the form

ρ(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

Ef(t, r, w, L) dL dw, (3.14)

p(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

w2

E
f(t, r, w, L) dL dw, (3.15)

j(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

w f(t, r, w, L) dL dw; (3.16)

the quantity q is not needed in what follows. Since on the support of f the quantity L

is bounded initially, it remains bounded for all time. In order to establish the theorem

one needs to control the increase in |v| along characteristics which stay away from the

center. Because of the relation |v|2 = w2+L/r2, it is sufficient to control w along such a

characteristic. If we substitute the expressions for ∂tλ and ∂rµ and for the source terms

into (3.12), we find that

ẇ = eµ−λ L

r3E
− eµ+λm(s, r)

r2
E

+ 4πreµ+λ π

r2

∫ ∞

−∞

∫ ∞

0

(
ww̃ − E

w̃2

Ẽ

)
f(s, r, w̃, L̃) dL̃ dw̃

with the obvious definition of Ẽ. Now L is bounded, r is bounded away from zero, m

is bounded by M , and µ − λ ≤ µ + λ ≤ 0 by (3.7). Hence the term to focus on is the

double integral. But

ww̃ − E
w̃2

Ẽ
=

w̃

Ẽ

w2(1 + w̃2 + L̃/r2)− w̃2(1 + w2 + L/r2)

wẼ + w̃E

=
w̃

Ẽ

w2(1 + L̃/r2)− w̃2(1 + L/r2)

wẼ + w̃E
,

provided the denominator does not vanish. In the last step the term w2w̃2, which is the

worst one concerning powers of w or w̃, canceled, and this is the crucial observation in
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order to establish Theorem 3.3, since it leads to an estimate of the form

P (t) ≤ P (0) + C

∫ t

0

P (s) lnP (s) ds;

cf. the continuation criterion in Theorem 3.1.

The result above refers to the Einstein-Vlasov system written in Schwarzschild coordi-

nates. The analogous result in so-called maximal-isotropic coordinates was established in

[47]. In [23] the analogous result is established using coordinates which cover the whole

spacetime, even in the presence of trapped surfaces.

To appreciate this result it is instructive to think of a spherically symmetric solution

of the Einstein-dust system. In that system all particles move radially, and particles

at the same radius r have the same momentum, i.e., they remain on the same sphere

which can grow or shrink as a whole; cf. (2.6). If two such spheres cross, the system

experiences a so-called shell-crossing singularity which occurs at some positive radius. If

one wants to study the formation of event horizons and spacetime singularities in the

Einstein-dust system, one has to handle the problem that the solution may break down

due to a shell-crossing singularity before the objects of interest have actually evolved.

4. Gravitational collapse and formation of black holes. As pointed out repeat-

edly above, Schwarzschild coordinates do not cover regions of spacetime which contain

trapped surfaces. Since in gravitational collapse the latter typically appear before a sin-

gularity forms, one may well argue that in order to investigate gravitational collapse and

the formation of black holes, one should better not use these coordinates to begin with.

On the other hand, they do have advantages from an analysis point of view, and one may

still hope to derive the desired information on gravitational collapse from the asymptotic

behavior of the solution for large Schwarzschild time. But for large data which possibly

lead to gravitational collapse there is so far no global existence result in Schwarzschild

time. In order to bypass this difficulty we study the solutions in a coordinate region which

avoids the center, on which we can consistently formulate and study the corresponding

Cauchy problem, and which is large enough to allow us to conclude the formation of

black holes. That the behavior of the solution on this coordinate region indeed implies

the weak cosmic censorship conjecture and the formation of a black hole is shown in

Section 4.3, where we rely on a mathematical formulation of the corresponding concepts

given in [20].

4.1. The system on an outer domain. We study the solutions to the spherically sym-

metric, asymptotically flat Einstein-Vlasov system (2.9)–(2.17) on the exterior region

D := {(t, r) ∈ [0,∞[2| r ≥ γ+(t)}, (4.1)

where γ+ is an outgoing radial null geodesic originating from some r = r0 > 0, i.e.,

dγ+

ds
(s) = e(µ−λ)(s,γ+(s)), γ+(0) = r0. (4.2)

This equation is obtained from (3.11) by replacing the 1 in the definition of E by 0, i.e.,

the particle under consideration has rest mass 0 like a photon should, and by putting

L = 0, i.e., the photon moves radially. That the photon is outgoing, i.e., moving away
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from the center, means that w > 0, and hence w/E = 1. In order to restrict the analysis

of the system to the region D we have to find a replacement for the boundary condition

(2.8). We prescribe the total ADM mass M > 0 and redefine the quasi-local mass by

m(t, r) = M − 4π

∫ ∞

r

ρ(t, η) η2dη, (4.3)

while retaining the definition (3.1) for λ. Clearly, a solution of the system as considered

in the previous section, when restricted to D, is a solution of this modified system.

Moreover, characteristics of the Vlasov equation can pass from the region D into the

region {r < γ+(t)} but not the other way around so that initial data
◦
f posed for r > r0

completely determine the solution on the outer domain D. Such data need to satisfy the

restrictions (3.6) and

Mout = 4π

∫ ∞

r0

◦
ρ(η) η2dη < M, (4.4)

where
◦
ρ is induced by

◦
f. Then limr→∞ m(t, r) = M and 0 ≤ m ≤ M . The crucial

question is whether one can specify data such that γ+ has the property that

lim
s→∞

γ+(s) < ∞. (4.5)

While this is not sufficient to conclude the formation of a black hole, it turns out to be

the main step towards that goal.

It is important to note that the behavior or even the nature of the matter in the region

{r < γ+(t)} is not going to be relevant in what follows. For example one can equally well

think of Vlasov data being posed on {r ≥ 0}, but only the data on {r ≥ r0} need to be

properly restricted in order to obtain the desired behavior of the solution on the outer

domain D. What is essential is that there initially is and hence remains some matter in

the region {r < γ+(t)} as guaranteed by the condition Mout < M .

4.2. The main result—analysis in Schwarzschild coordinates. The initial data
◦
f ∈

C1
c (R

6) for the outer matter should satisfy the condition that on supp
◦
f,

R0 ≤ r ≤ R1, w ≤ W−,

where we use the variables (r, w, L) introduced above, and

0 < r0 < R0 < R1, W− < 0.

In particular, all particles move inward initially. These parameters can be specified in

such a way that the data are close to violating the condition 2
◦
m(r)/r < 1, that the

particles continue to move inward on the outer domain D, and that (4.5) holds. The

main result is the following.

Theorem 4.1. There exists a class of regular initial data for the spherically symmetric

Einstein-Vlasov system such that for such data the corresponding solution exists on D,

and

lim
s→∞

γ+(s) < ∞.

In addition the following holds:
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(a) For t → ∞ no matter remains in the region {r > 2M}. More precisely, the

solution is vacuum and the metric equals the Schwarzschild metric (1.1) with

mass M in the region

t ≥ 0 and r ≥ 2M + αe−βt.

Here α, β > 0 depend only on the initial data class.

(b) In the outer region D and for r ≤ 2M ,

lim
t→∞

µ(t, r) = −∞;

more precisely,

µ(t, r) ≤ ln

(
αe−βt

2M + αe−βt

)1/2

for all t ≥ 0 and γ+(t) ≤ r ≤ 2M + αe−βt. This implies that for c ≤ 2M the

timelike lines r = c are incomplete; i.e., they have finite proper length, and this

length is uniformly bounded.

(c) The radially outgoing null geodesic which does not escape to infinity and is fur-

thest to the right with this property gets trapped precisely at the Schwarzschild

radius r = 2M . More precisely, we define

r∗ := sup{r ≥ r0 | the radially outgoing null geodesic γ with

γ(0) = r satisfies lim
s→∞

γ(s) < ∞},

and we let γ∗ be the radially outgoing null geodesic with γ∗(0) = r∗. Then

lim
s→∞

γ∗(s) = 2M,

and every radially outgoing null geodesic γ with γ(0) > r∗ is future complete;

i.e., it exists on [0,∞[ in an affine parameterization, and lims→∞ γ(s) = ∞.

If a solution with mass M of the spherically symmetric, asymptotically flat Einstein-

Vlasov system collapses to a black hole of mass M and if we coordinatize this solution

by Schwarzschild coordinates, then the asymptotic behavior as t → ∞ of this solution

should be as given by this theorem. In the next subsection we show that this behavior

actually implies that a black hole forms in the sense of a suitable, coordinate-independent

formulation of this concept.

For a complete proof of Theorem 4.1 we refer to [6]. Here we want to highlight some

central arguments. The first of these makes sure that the particles in the outer domain D

keep moving inward in a controlled way. Since initially w ≤ W− < 0 for all particles, this

remains true on some time interval. On this time interval and along any characteristic
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in supp f ,

d

ds
(e−λw) = −4π2

r
eµ

∫ ∞

−∞

∫ ∞

0

[√
Ẽ

E
w −

√
E

Ẽ
w̃

]2

f dL̃ dw̃

− eµ
m

r2

(
1 + L/r2

E
+

2L

r2E

)
+ eµ

L

r3E

≤ −eµ
m

r2

(
1 + L/r2

E
+

2L

r2E

)
+ eµ

L

r3E
.

Differentiating (3.1) w.r.t. t and using (2.12) leads to ∂tm = −4πr2eµ−λj ≥ 0 on the

time interval we consider. It follows that m(s, r) ≥ m(0, r) =
◦
m(r). Thus as long as the

characteristic remains in D,

d

ds
(e−λw) ≤ eµ

1

r3E

(
L− 3L

r
◦
m(r)− r

◦
m(r)

)
.

We require that

0 < L <
3L

r
◦
m(r) + r

◦
m(r), r ∈ [r0, R1] (4.6)

on supp
◦
f. Then the above estimate together with a bootstrap argument and the fact

that eλ ≥ 1 shows that

w ≤
(

min
r∈[R0,R1]

e−λ(0,r)
)
W− (4.7)

on supp f ∩D.

Before going further, some comments on the condition (4.6) are in order. By our

general setup, some mass must be inside {r ≤ r0} initially, and this mass is a lower

bound on
◦
m in (4.6). The role of this mass is not to pull the particles inward, but to

keep them focused towards the center. The smaller their angular momentum is, i.e., the

better they are aimed straight towards the center, the smaller can the central mass be

chosen initially. Notice that for spherically symmetric dust, which is used as a matter

model in [32] and [13], all particles have angular momentum equal to zero.

The second issue in the proof of Theorem 4.1 we want to touch upon is the limiting

behavior of γ+. The basic idea is to consider a radially ingoing null geodesic γ− which

starts to the left of the outer matter and to the right of γ+, i.e.,

dγ−

ds
(s) = −e(µ−λ)(s, γ−(s)), r0 < r1 = γ−(0) < R0.

Then initially and therefore as long as γ+ and γ− do not intersect, there is no matter

in the region between the outgoing and the ingoing null geodesic. This fact can be used

to estimate their relative velocity in such a way that in Schwarzschild time they actually

never intersect. This proves the limiting behavior of γ+ and furthermore shows that the

matter which is initially in D stays strictly to the right of γ+ and therefore in D for all

future Schwarzschild time. In order to estimate how far the two null geodesics can move,

at most we observe that by (3.3),

µ(t, r) ≤ −
∫ ∞

r

e2λ(t,s)
m(t, s)

s2
ds =: µ̂(t, r),
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and hence

|γ̇±| ≤ eµ̂.

We wish to see that the right-hand side becomes small, and to this end we observe that

the following chain of estimates yields a lower bound for ∂tµ̂:

1− e(µ+λ)(t,r) =

∫ ∞

r

(∂rλ+ ∂rµ)(t, η) e
µ+λdη

= 4π

∫ ∞

r

η (ρ+ p)(t, η)eµ+λe2λ dη

≤ 4π

∫ ∞

r

3 η (−j(t, η)) eµ+λe2λ dη

= −3

∫ ∞

r

η
∂

∂t

(
e2λ

m(t, η)

η2

)
dη

≤ −3R1∂tµ̂(t, r). (4.8)

In the first estimate we exploit the fact that not only is j negative, but by choosing |W−|
large the source terms ρ and p can be estimated by a suitable multiple of −j.

If one puts all the details which are left out here together, one obtains a list of con-

ditions on the initial data which make sure that these estimates hold true for all future

Schwarzschild time. The resulting conditions are the following:

supp
◦
f ⊂ [R0, R1] × ]−∞,W0]× [0,∞[

with

0 < r0 < r1 = 2M < R0 =
r1 +R1

2
< R1, W− < 0,

0 <
◦
m(r0) < M,

2
◦
m(r0)

r0
<

8

9
(4.9)

and either

R1 − r1 <
r1 − r0

6
or √

1− r1
R1

< min

{
1

6
,

r20
36R1M

,
r1 − r0
24R1

}
.

Since r1 = 2M , the latter two conditions both say that 2M/R1 must be close to 1. Once

r0, r1, R0, R1, and
◦
m(r0) have been chosen, |W−| has to be chosen sufficiently large where

we refrain from making this precise here. Any initial distribution on {r > r0} which

satisfies (3.6) and (4.6) is admissible in Theorem 4.1, and it is easy to see that there exist

such data.

Since the various parameters which enter the definition of our class of admissible data

are defined in terms of inequalities, the set of data has “nonempty interior”, in the sense

that sufficiently small perturbations of initial data in the “interior” of this set belong to

it as well.

The crucial step in the proof of the remainder of Theorem 4.1 is to show that all

particles move towards r = 2M with the stated estimate. As a first step note that by
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(3.1) and (3.3),

(µ− λ)(t, r) ≥ ln
r − 2M

r
, r > 2M.

Together with the control for the radial momentum of the particles this implies that

along any characteristic in the matter support,

ṙ = e(µ−λ)(s,r)w

E
≤ −Ce(µ−λ)(s,r) ≤ −C

r − 2M

r

as long as r > 2M ; C > 0 is determined by the initial data parameters. Integrating this

differential inequality proves the support estimate in the theorem.

The spherically symmetric, asymptotically flat Einstein-Vlasov system has a wide

variety of static solutions with finite ADM mass and compact matter support; cf. [36,

41, 42]. Particularly interesting examples of initial data to which our results apply are

obtained if the matter for r ≤ r0 is represented by such a static solution.

Corollary 4.2. Let fs be a static solution of the spherically symmetric, asymptotically

flat Einstein-Vlasov system with finite ADM mass Ms > 0 and finite radius rs > 0.

Define r0 = rs, let r1 > r0 be arbitrary, M = r1/2, and Mout = M − Ms; the latter

quantity is positive. Then one can construct data
◦
f on {r ≥ rs} such that the solution of

the Einstein-Vlasov system launched by fs +
◦
f has the properties stated in Theorem 4.1,

it exists for all t ≥ 0 and r ≥ 0, and it coincides with the static solution fs for all

r ≤ γ+(t) and t ≥ 0.

It is at this point that the choice 8/9 in (4.9) is relevant; for the proof of Theorem 4.1,

any positive constant less than 1 would do. But in [4] it is shown that for any steady

state of the spherically symmetric Einstein-Vlasov system the condition 2m(r)/r < 8/9

holds for all r > 0, and this bound is actually sharp; cf. [3].

Given the fact that the solutions described in Theorem 4.1 undergo gravitational

collapse and form a black hole it may seem strange that in the center of such a solution

a steady state comfortably sits for all t ≥ 0. But this is of course due to the fact that

t is Schwarzschild time. In the region r < 2M the solution can be extended using a

different time coordinate, and if the latter is properly chosen, then the outer matter

will all pass within r < 2M , it will crash into the steady state, and all the matter will

finally collapse into a spacetime singularity. To support all phases of this evolution with

rigorous theorems is one of our projects for current and future research; cf. Section 5.3.

On the other hand, the fact that the steady state sits undisturbed in the center as long

as none of the outer matter reaches it is easily understood from a physics point of view,

and just as easily proven. In spherical symmetry, particle orbits within a certain radius

r are not influenced by matter which is at strictly larger radii. Hence adding the outer

matter shell does not change the fact that the steady state satisfies the Einstein-Vlasov

system on {r ≤ r0} as long as the outer matter remains outside that region.

4.3. Weak cosmic censorship and the formation of a black hole. The result of the

previous section shows in particular that no particle and no light ray can escape from the

region {r ≤ γ∗(t)} ⊂ {r ≤ 2M}. Since outside of this domain the solution is global, this

means in particular that no causal curve originating in a possible singularity can reach

the region {r > 2M}. However, all this refers to the formulation of the Einstein-Vlasov
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system in Schwarzschild coordinates, and we are not (yet) allowed to conclude that our

spacetime satisfies the weak cosmic censorship conjecture and that a black hole forms. In

the present subsection, we address these questions in a coordinate-independent manner.

We start with showing that spacetimes as obtained in the previous subsection satisfy the

weak cosmic censorship conjecture which in heuristic terms says that no singularities can

be observed from infinity even if the observations are allowed to continue indefinitely.

Expressed more precisely we have to show:

Proposition 4.3. The spacetimes obtained in Theorem 4.1 possess a complete future

null infinity.

The concept of future null infinity usually refers to a conformal compactification of

the spacetime under investigation which attaches a boundary at infinity; cf. [51, 11.1].

We prefer to follow Christodoulou [20, p. A26] for the definition of the term “possess a

complete future null infinity”.

The set B0 := {(0, r) | r < R1} has compact closure, and the boundary C+
0 of its

causal future is given by the radially outgoing null geodesic γ1 starting at R1; we recall

that R1 is the outer radius of the initial matter support in Theorem 4.1. By that theorem,

γ1 is future complete. Consider now a domain B := {(0, r) | r < R2} with R2 > R1

and the boundary C− of its domain of dependence which is given by the radially ingoing

null geodesic γ2 starting at R2. According to the definition in [20], we must show that

the affine length of γ2, measured from the intersection of γ1 and γ2, goes to infinity as

R2 → ∞. In doing so the affine parameterization of γ2 must be normalized in such a

way that its tangent at (0, R2) equals the vector T −N , where T is the future directed

unit normal to the initial hypersurface {t = 0}, i.e., T = (e−µ(0,R2), 0, 0, 0), and N is the

outward unit normal to B in the initial hypersurface, i.e., N = (0, e−λ(0,R2), 0, 0).

It turns out that already the affine length of γ2 between the intersections with γ1 and

with the line r = R1 goes to infinity as R2 → ∞. But on the region {r ≥ R1} we have

according to Theorem 4.1, vacuum with metric given by

e2µ(t,r) = 1− 2M

r
= e−2λ(t,r).

When parameterized by coordinate time, radial null geodesics in the region {r ≥ R1}
satisfy the estimates

1− 2M

R1
≤ 1− 2M

r
= eµ−λ =

∣∣∣∣drdt
∣∣∣∣ ≤ 1.

Let (T ∗, R∗) denote the point where γ1 and γ2 intersect. By the above estimate, γ1(t) ≤
R1 + t and γ2(t) ≥ R2 − t which implies that T ∗ ≥ (R2 −R1)/2 and hence

R∗ ≥ R1 +
R2 −R1

2

(
1− 2M

R1

)
.

Consider now an affine parameterization τ �→ (t, r, θ, ϕ)(τ ) of γ2, τ ≥ 0, with (t, r)(0) =

(0, R2). Since γ2 is radial, θ = π/2, ϕ = 0. Since γ2 is null,

−e2µ
(
dt

dτ

)2

+ e2λ
(
dr

dτ

)2

= 0,
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and since γ2 is ingoing, i.e., dr/dτ < 0, we find that

dt

dτ
= −eλ−µ dr

dτ
.

By the geodesic equation,

d2r

dτ2
= −e2(µ−λ)∂rµ

(
dt

dτ

)2

− ∂rλ

(
dr

dτ

)2

− 2∂tλ
dt

dτ

dr

dτ

= 4πre2λ
(
dr

dτ

)2

[−p− ρ− 2j] = 0; (4.10)

i.e., dr/dτ = const =: σ as long as γ2 is in the vacuum region {r ≥ R1}. The normaliza-

tion condition mentioned above requires that(
dt

dτ
,
dr

dτ

)
(0) =

(
−eλ(0,R2)−µ(0,R2)σ, σ

)
=

(
e−µ(0,R2),−e−λ(0,R2)

)
,

which means that we should choose σ := −e−λ(0,R2). Let τ1 and τ2 be the values of the

affine parameter such that (t, r)(τ1) is the intersection point of γ2 with γ1 and (t, r)(τ2)

is the intersection point of γ2 with the line r = R1, i.e., r(τ1) = R∗ and r(τ2) = R1. For

the affine length L of the corresponding piece of γ2 we find that

L =

∫ τ2

τ1

dτ =

∫ R1

R∗

dr

σ
= eλ(0,R2)(R∗ −R1)

≥
(
1− 2M

R2

)−1/2
R2 − R1

2

(
1− 2M

R1

)
→ ∞ as R2 → ∞.

This proves the claim of Proposition 4.3 in the sense of [20].

We now turn to the question whether Theorem 4.1 also implies the formation of a black

hole in some appropriate, coordinate-free sense. A maximal development of Cauchy data

is said to contain a black hole if future null infinity I+ is complete and the causal past

J−(I+) of future null infinity has a nonempty complement; cf. [23, Sect. 12]. Intuitively

this says that no causal curve, i.e., no particle trajectory or light ray, originating in the

complement of J−(I+) can reach future null infinity, and that such trapped causal curves

really exist. In the spacetimes obtained in Theorem 4.1 the null geodesic γ∗ does not

reach future null infinity, and since we have shown that the latter is actually complete,

γ∗ cannot reach future null infinity in any extension (such as the maximal development)

either. Since I+ is complete for the spacetimes we obtained, γ∗, in order to reach I+

in the maximal development, would have to enter the outer region D; γ∗(τ∗) ∈ D. But

following γ∗ backwards we see that it must have stayed in D for τ ≤ τ∗ and hence cannot

have reached the region {r > 2M} to begin with.

In other words, we have in Theorem 4.1 constructed a globally hyperbolic spacetime

M which has a complete I+ and in which the complement of J−(I+) is nonempty. If

we consider the maximal development M of the same Cauchy data, it has the same,

complete I+, and since M ⊂ M, the complement of J−(I+) in M is nonempty as well.

Hence the following is true.
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Proposition 4.4. Initial data as specified in Theorem 4.1 lead to the formation of a

black hole in the following sense. The spacetimes M obtained in Theorem 4.1 possess a

complete future null infinity I+, and its causal past J−(I+) has nonempty complement

in the maximal development of the data.

5. Concluding remarks. In this final section we want to discuss the question to

which extent the results from the previous section really depend on the particular matter

model which we employed, we want to compare these results to previous results for other

matter models, and we want to discuss future perspectives.

5.1. General matter models. The issue of gravitational collapse and in particular the

validity of the cosmic censorship conjecture should of course be addressed not just for

one particular matter model such as the collisionless gas. Indeed, some key arguments

in the proof of Theorem 4.1 do depend only on certain general properties of the matter

model and not on its specific nature. We briefly discuss this issue. To this end, let

ρ := e−2µT00, p := e−2λT11, j := −e−µ−λT01. (5.1)

Firstly, we assume that the following two conditions are satisfied.

• The dominant energy condition holds. (DEC)

• The radial pressure p is nonnegative. (NNP)

In general relativity the dominant energy condition (DEC) is the main criterion which a

matter model must satisfy in order to be considered realistic; cf. [29]. The nonnegative

pressure condition (NNP) is a standard assumption for most astrophysical models. These

two criteria imply that

0 ≤ p ≤ ρ and |j| ≤ ρ; (5.2)

cf. [29] and [35]. Furthermore, by (DEC), any world line (s,R(s)) of a material particle

or a photon satisfies the estimate∣∣∣∣dRds (s)
∣∣∣∣ ≤ e(µ−λ)(s,R(s))

so that locally the speed of energy flow is less than or equal to the speed of light. In

addition we need to assume certain a priori information on the behavior of the solutions

of the Einstein-matter equations, namely, that for solutions launched by data from a

suitable class,

• γ+ defined by (4.2) exists on [0,∞[, and the solution exists on D, (GLO)

• there exists a constant c1 > 0 such that ρ ≤ −c1j in D. (GCC)

The role of the “global existence condition” (GLO) is obvious. The “gravitational collapse

condition” (GCC) is crucial for our method of proof; in particular, together with (5.2), it

implies that j ≤ 0 in D, i.e., that the matter is ingoing for all times. Notice also that in

(4.8), condition (GCC) was used. We emphasize that for Vlasov matter the conditions

(DEC) and (NNP) hold always, while (GLO) and (GCC) follow via (4.7) from a suitable

restriction of the initial data.

For a general matter model satisfying these assumptions, not all the results in Theo-

rem 4.1 can be obtained, but the following still holds:

lim
s→∞

γ+(s) < ∞ and lim
t→∞

µ(t, r) = −∞ for lim
s→∞

γ+(s) ≤ r ≤ r1
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for some r1 > lims→∞ γ+(s). If r∗ and γ∗ are defined as in Theorem 4.1, then

lim
s→∞

γ∗(s) < ∞,

and every radially outgoing null geodesic γ with γ(0) > r∗ is future complete with

lims→∞ γ(s) = ∞. The analysis in Section 4.3 applies to the resulting spacetimes as

well, in particular since they again are vacuum for r ≥ R1.

5.2. Related results. Due to the inherent difficulties of the Einstein field equations,

progress towards understanding the issues of cosmic censorship and the formation of

black holes has up to now been restricted to the case of spherical symmetry. At least

this assumption is made in all the papers we mention below.

The most complete understanding of the issues at hand has so far been obtained

for the case where the Einstein equations are coupled to a massless scalar field; cf.

[14, 15, 16, 17, 18, 19, 20]. The final result of these investigations is that weak and

strong cosmic censorship hold for the Einstein-scalar field system. A crucial step was the

investigation in [16] where explicit conditions on the initial data were formulated which

guarantee the formation of a trapped surface. Although the conditions we impose for

Theorem 4.1 are reminiscent of the ones in [16], there is also an important difference. In

[16] the admissible data cover the full range of 2m/r ∈ ]0, 1[, whereas for our result we

need that initially 2m/r is close to one in the outer matter ring.

However, there may be a better reason for this difference than just the limited abilities

of the present authors. The spherically symmetric Einstein-Vlasov system can exhibit

at least the following qualitatively different types of behavior. Firstly, for small data the

solution disperses in the sense of Theorem 3.2. Secondly, the system has a tremendously

rich family of steady states; cf. [36, 41, 42] and also [8] concerning the possible shapes

these steady states can take. Numerical investigations show clearly that there are both

stable and unstable steady states; cf. [7]. There is also strong numerical evidence [7] that

the system has time-periodic or at least almost-periodic solutions, which is the third

type of solution behavior. The fourth and last type of solution behavior is gravitational

collapse and formation of a black hole as shown by Theorem 4.1. To our knowledge only

dispersion and gravitational collapse are known as possible solution behaviors for the

Einstein-scalar field system, and this wider range of qualitative solution behaviors for

the Vlasov matter model may explain why the condition needed to force gravitational

collapse is more restrictive than for the scalar field.

In passing we also note that the primary motivation for coupling the Einstein equations

to a scalar field is, according to [20], to capture the wave nature of nonsymmetric vacuum

solutions to the Einstein equations in a spherically symmetric setup while still enjoying

the simplifications which the latter symmetry assumption entails. As mentioned above,

the Vlasov matter model is actually used in astrophysics to describe galaxies or globular

clusters.

Another matter model which features prominently in the history of the concepts of

gravitational collapse and black holes is a fluid with pressure zero which is usually termed

dust. The analysis in [32] has definitely shaped the overall picture of gravitational collapse

to a large extent. The physical reason for neglecting pressure is the intuition that once

the collapse is sufficiently advanced, gravity will dominate all other forces, including
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pressure. One important mathematical advantage of this matter model is that one can

use coordinates which are co-moving with the matter. On the other hand, dust produces

shell-crossing singularities which hinder the analysis of the real issues, and dust can lead

to naked singularities as shown in [13]. Whether cosmic censorship will eventually be

established for Vlasov matter or not, solutions of the Einstein-Vlasov system do have non-

trivial pressure, and the system has so far not been shown to produce naked singularities.

In making the last statement we are fully aware of [50]. There it is claimed that

numerical simulations of the axially symmetric Einstein-Vlasov system can lead to naked

singularities. However, there is reason to believe that the matter model which was

actually simulated in [50] was dust and not Vlasov; cf. [45].

To conclude this comparison with previously known results, we mention that in [45]

a continuity argument was used to show that there exist initial data for the spherically

symmetric Einstein-Vlasov system which lead to the formation of trapped surfaces. Com-

bining this with the results of [21] and [23] implies that there exist data which lead to

the formation of a black hole. Due to the method of proof in [45], this analysis does not

give explicit conditions on the data which guarantee this type of behavior. Our approach

does produce such explicit conditions on the data, and these data are stable against

perturbations which are small in a suitable sense.

5.3. Open problems and future perspectives. To conclude we mention some open prob-

lems and possible perspectives for future research. An immediate question is whether the

geodesic γ∗ in Theorem 4.1 is future complete; the question whether an event horizon

has complete generators is of general interest. This issue is closely related to the question

whether in the limit t → ∞ all the matter ends up in the region {r ≤ 2M}, i.e., whether
limt→∞ m(t, 2M) = 2M . It is clear from the geodesic equation for γ∗ that this geodesic

cannot be complete if it is running in vacuum all the time, cf. (4.10), which means that

at least some matter must cross r = 2M if γ∗ should be complete. These questions

are currently under investigation by two of the authors, and we believe that for suitably

restricted data indeed limt→∞ m(t, 2M) = 2M .

The next logical step will be to analyze the situation corresponding to Theorem 4.1

in a coordinate system which has the potential to cover regions of spacetime containing

trapped surfaces and which may reach all the way to the spacetime singularity which

forms at the center. Preliminary steps in this direction look promising.

Much more demanding is the question of how to relax the conditions in Theorem 4.1 so

that the numerical observations reported in [7] where the perturbation of unstable steady

states leads to the formation of black holes are covered. An analytic understanding of

the stability properties, which were observed numerically, is a further open problem.

An answer to this could also help to explain the phenomenon of critical collapse; cf.

[7, 31, 44] for relevant numerical results for the Einstein-Vlasov system and [28] for a

general discussion of this issue.

As pointed out above, the question whether weak cosmic censorship holds for the

spherically symmetric Einstein-Vlasov system is related to the question whether this

system has global solutions in Schwarzschild coordinates or not. Useful estimates in the

direction of global existence in Schwarzschild coordinates, which go beyond what was

reported in Section 3, were established in [2], but the problem remains open. When
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thinking about weak cosmic censorship one should definitely keep the possibility in mind

that global existence in Schwarzschild coordinates could be violated for an initial data

set “of measure zero”, while weak cosmic censorship could still be true for the spherically

symmetric Einstein-Vlasov system.

Eventually one will wish to go beyond spherical symmetry, and any extension of the

results mentioned in these notes to, for example, the case of axial symmetry is in our

opinion a challenging and worthwhile problem.

Acknowledgement. The authors would like to thank Piotr Chruściel, Helmut
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symmetry, Ann. Henri Poincaré 6, 1137–1155 (2005). MR2189379 (2007c:83011)

[24] A. Einstein, Zur Allgemeinen Relativitätstheorie, Sitzungsber. der Preuss. Akad. der Wis-
senschaften zu Berlin; 1915, 778–786 (1915).

[25] A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsber. der Preuss. Akad. der Wis-
senschaften zu Berlin; 1915, 844–847 (1915).

[26] R. T. Glassey, W. A. Strauss, Singularity formation in a collisionless plasma could occur only at
high velocities, Arch. Rat. Mech. Anal. 92, 59–90 (1986). MR816621 (87j:82064)

[27] R. T. Glassey, W. A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Commun.
Math. Phys. 113, 191–208 (1987). MR919231 (88k:76034)

[28] C. Gundlach, Critical phenomena in gravitational collapse, Living Rev. Relativity 2 (1999).
MR1728882 (2001a:83061)

[29] S. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press
1975. MR0424186 (54:12154)

[30] P.-L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-
Poisson system, Invent. Math. 105, 415–430 (1991). MR1115549 (92e:35160)

[31] I. Olabarrieta, M. W. Choptuik, Critical phenomena at the threshold of black hole formation for col-
lisionless matter in spherical symmetry, Phys. Rev. D. 65, 024007 (2002). MR1892138 (2003a:83048)

[32] J. R. Oppenheimer, H. Snyder, On continued gravitational contraction, Phys. Rev. 56, 455–459
(1939).

[33] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14, 57–59 (1965).
MR0172678 (30:2897)

[34] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for
general initial data, J. Differential Equations 95, 281–303 (1992). MR1165424 (93d:35170)

[35] E. Poisson, A Relativist’s Toolkit. The Mathematics of Black-hole Mechanics, Cambridge University
Press, 2004. MR2063287 (2005d:83002)

[36] G. Rein, Static solutions of the spherically symmetric Vlasov-Einstein system. Math. Proc. Camb.
Phil. Soc. 115, 559–570 (1994). MR1269939 (95b:83054)

[37] G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitationsschrift, München, 1995.
[38] G. Rein, Collisionless Kinetic Equations from Astrophysics—The Vlasov-Poisson System, Handbook

of Differential Equations, Evolutionary Equations. Vol. 3. Eds. C. M. Dafermos and E. Feireisl,
Elsevier (2007).

[39] G. Rein, A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein
system with small initial data, Comm. Math. Phys. 150, 561–583 (1992). Erratum: Comm. Math.

Phys. 176, 475–478 (1996). MR1204320 (94c:83028)
[40] G. Rein, A. D. Rendall, The Newtonian limit of the spherically symmetric Vlasov-Einstein system,

Comm. Math. Phys. 150, 585–591 (1992). MR1204321 (94c:83029)
[41] G. Rein, A. D. Rendall, Smooth static solutions of the spherically symmetric Vlasov-Einstein system.
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