Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the particle paths in solitary water waves


Author: Adrian Constantin
Journal: Quart. Appl. Math. 68 (2010), 81-90
MSC (2000): Primary 35Q35, 76B07; Secondary 35J65, 76B25
DOI: https://doi.org/10.1090/S0033-569X-09-01166-1
Published electronically: October 15, 2009
MathSciNet review: 2598882
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide the qualitative flow pattern beneath a solitary water wave by describing the individual particle trajectories.


References [Enhancements On Off] (What's this?)

  • 1. G. B. Airy, Tides and waves, Encyc. Metropolitana 5 (1845), 241-396.
  • 2. C. J. Amick, Bounds for water waves, Arch. Rat. Mech. Anal. 99 (1987), 91-114. MR 886932 (88i:76009)
  • 3. C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Phil. Trans. Roy. Soc. London A 303 (1981), 633-669. MR 647410 (83b:76009)
  • 4. C. J. Amick and J. F. Toland, On solitary water waves of finite amplitude, Arch. Rat. Mech. Anal. 76 (1981), 9-95. MR 629699 (83b:76017)
  • 5. J. T. Beale, The existence of solitary water waves, Comm. Pure Appl. Math. 30 (1977), 373-389. MR 0445136 (56:3480)
  • 6. M. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal réctangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl. 17 (1872), 55-108.
  • 7. A. Constantin, On the deep water wave motion, J. Phys. A 34 (2001), 1405-1417. MR 1819940 (2002b:76010)
  • 8. A. Constantin, Edge waves along a sloping beach, J. Phys. A 34 (2001), 9723-9731. MR 1876166 (2002j:76015)
  • 9. A. Constantin, The trajectories of particles in Stokes waves, Inv. Math. 166 (2006), 523-535. MR 2257390 (2007j:35240)
  • 10. A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J. 140 (2007), 591-603. MR 2362244
  • 11. A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. 44 (2007), 423-431. MR 2318158 (2008m:76019)
  • 12. A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves, J. Nonl. Math. Phys. 15 (2008), 58-73. MR 2434725
  • 13. A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175-211. MR 2369543
  • 14. A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal. 192 (2009), 165-186. MR 2481064
  • 15. A. Constantin, D. Sattinger and W. Strauss, Variational formulations of steady water waves with vorticity, J. Fluid Mech. 548 (2006), 151-163. MR 2264220 (2008b:76018)
  • 16. A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math. 57 (2004), 481-527. MR 2027299 (2004i:76018)
  • 17. A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math. 60 (2007), 911-950. MR 2306225
  • 18. A. Constantin and W. Strauss, Rotational steady water waves near stagnation, Phil. Trans. Roy. Soc. London A 365 (2007), 2195-2201. MR 2329144 (2008j:76013)
  • 19. A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math. DOI: 10.1002/cpa.20299.
  • 20. W. Craig, Non-existence of solitary water waves in three dimensions, Phil. Trans. Roy. Soc. London A 360 (2002), 2127-2135. MR 1949966 (2003m:76011)
  • 21. W. Craig and P. Sternberg, Symmetry of solitary waves, Comm. Partial Differential Equations 13 (1988), 603-633. MR 919444 (88m:35132)
  • 22. A. D. D. Craik, The origins of water wave theory, Ann. Rev. Fluid Mech. 36 (2004), 1-28. MR 2062306 (2005a:01012)
  • 23. P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989. MR 985322 (90j:35166)
  • 24. M. Ehrnström, On the streamlines and particle paths of gravitational water waves, Nonlinearity 21 (2008), 1141-1154. MR 2412330
  • 25. L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge University Press, Cambridge, 2000. MR 1751289 (2001c:35042)
  • 26. K. O. Friedrichs and D. H. Hyers, The existence of solitary waves, Comm. Pure Appl. Math. 7 (1954), 517-550. MR 0065317 (16:413f)
  • 27. F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys. 2 (1809), 412-445.
  • 28. M. Groves and E. Wahlen, Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity, Physica D 237 (2008), 1530-1538. MR 2454604
  • 29. D. Henry, On Gerstner's water wave, J. Nonl. Math. Phys. 15 (2008), 87-95. MR 2434727
  • 30. V. M. Hur, Exact solitary water waves with vorticity, Arch. Rat. Mech. Anal. 188 (2008), 213-244. MR 2385741
  • 31. R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge University Press, Cambridge, 1997. MR 1629555 (99m:76017)
  • 32. R. S. Johnson, The classical problem of water waves: a reservoir of integrable and nearly-integrable equations J. Nonl. Math. Phys. 10 (2003), 72-92. MR 2063546 (2005c:76018)
  • 33. D. J. Korteweg and G. deVries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422-443.
  • 34. J. Lighthill, Waves in fluids, Cambridge University Press, Cambridge, 1978. MR 642980 (84g:76001a)
  • 35. J. W. Miles, Solitary waves, Ann. Rev. Fluid Mech. 12 (1980), 11-43. MR 565388 (82e:76018)
  • 36. W. J. M. Rankine, On the exact form of waves near the surface of deep water, Phil. Trans. Roy. Soc. London A 153 (1863), 127-138.
  • 37. Lord Rayleigh, On waves, Phil. Mag. 1 (1876), 257-279.
  • 38. J. S. Russell, Report on waves, Rep. Meet. Brit. Assoc. Adv. Sci. 14 (1844), 311-390.
  • 39. J. J. Stoker, Water waves, Interscience Publ. Inc., New York, 1957. MR 0103672 (21:2438)
  • 40. J. F. Toland, Stokes waves, Topol. Meth. Nonl. Anal. 7 (1996), 1-48. MR 1422004 (97j:35130)
  • 41. E. Varvaruca, On some properties of traveling water waves with vorticity, SIAM J. Math. Anal. 39 (2008), 1686-1692. MR 2377294 (2008m:76018)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35Q35, 76B07, 35J65, 76B25

Retrieve articles in all journals with MSC (2000): 35Q35, 76B07, 35J65, 76B25


Additional Information

Adrian Constantin
Affiliation: School of Mathematics, Trinity College, Dublin 2, Ireland
Address at time of publication: University of Vienna, Fakultät für Mathematik, Nordbergstraße 15, 1090 Wien, Austria
Email: adrian.constantin@univie.ac.at

DOI: https://doi.org/10.1090/S0033-569X-09-01166-1
Keywords: Euler equations, free boundary, conformal map, particle trajectory
Received by editor(s): December 12, 2008
Published electronically: October 15, 2009
Dedicated: Dedicated to Walter Strauss on his 70th birthday with esteem and friendship.
Article copyright: © Copyright 2009 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society