Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Space-time resonances


Author: Jalal Shatah
Journal: Quart. Appl. Math. 68 (2010), 161-167
MSC (2000): Primary 35B34; Secondary 35Q35
DOI: https://doi.org/10.1090/S0033-569X-09-01175-3
Published electronically: November 9, 2009
MathSciNet review: 2598888
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. T. Cazenave, F. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 147 (1992), no. 1, 75-100. MR 1171761 (93d:35150)
  • 2. R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels. Astérisque, 57. Société Mathématique de France, Paris, 1978. MR 518170 (81b:47061)
  • 3. P. Germain, N. Masmoudi, J. Shatah, Global Solutions for $ 3$D Quadratic Schrödinger equations, Internat. Math. Res. Notices 2009, no. 3, 414-432.
  • 4. J. Ginibre, N. Hayashi, Almost global existence of small solutions to quadratic nonlinear Schrödinger equations in three space dimensions, Math. Z. 219 (1995), no. 1, 119-140. MR 1340853 (96e:35158)
  • 5. S. Gustafson, K. Nakanishi, T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré 8 (2007), no. 7, 1303-1331. MR 2360438 (2008m:35335)
  • 6. S. Gustafson, K. Nakanishi, T.-P. Tsai, Scattering theory for the Gross-Pitaevski equation in three dimensions, preprint.
  • 7. N. Hayashi, T. Mizumachi, P. Naumkin, Time decay of small solutions to quadratic nonlinear Schrödinger equations in $ 3$D, Differential Integral Equations 16 (2003), no. 2, 159-179. MR 1947090 (2004a:35197)
  • 8. Y. Kawahara, Global existence and asymptotic behavior of small solutions to nonlinear Schrödinger equations in $ 3$D, Differential Integral Equations 18 (2005), no. 2, 169-194. MR 2106101 (2005i:35247)
  • 9. S. Klainerman, G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), no. 1, 133-141. MR 680085 (84a:35173)
  • 10. S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38 (1985), no. 5, 631-641. MR 803252 (87e:35080)
  • 11. K. Nakanishi, T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), no. 1, 45-68. MR 1891695 (2003a:35177)
  • 12. N. Hayashi, P. Naumkin, On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices 2000, no. 3, 115-132. MR 1741610 (2001a:35165)
  • 13. J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (1982), no. 3, 409-425. MR 681231 (84g:35036)
  • 14. J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 685-696. MR 803256 (87b:35160)
  • 15. W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), no. 1, 110-133. MR 614228 (83b:47074a)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35B34, 35Q35

Retrieve articles in all journals with MSC (2000): 35B34, 35Q35


Additional Information

Jalal Shatah
Affiliation: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
Email: shatah@cims.nyu.edu

DOI: https://doi.org/10.1090/S0033-569X-09-01175-3
Received by editor(s): December 31, 2008
Published electronically: November 9, 2009
Additional Notes: This research is funded in part by NSF DMS 0701272.
Article copyright: © Copyright 2009 Brown University

American Mathematical Society