CRITICAL RAYLEIGH NUMBER IN RAYLEIGH-BÉNARD CONVECTION

BY

YAN GUO (Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912)

AND

YONGQIAN HAN (Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, People’s Republic of China)

Dedicated to Prof. W. A. Strauss on the occasion of his 70th birthday

Abstract. The Rayleigh-Bénard convection is a classical problem in fluid dynamics. In the presence of rigid boundary condition, we identify the critical Rayleigh number \(R^* \) by a reduced variational problem. We prove nonlinear asymptotic stability for motionless steady states for \(R_a < R^* \), and their nonlinear instability for \(R_a > R^* \). The dynamic of such instability is determined by the leading growing mode(s) for the corresponding linearized system within the time interval of instability.

1. Introduction. Rayleigh-Bénard convection in a shallow horizontal layer of a fluid heated from below has been widely studied in \[2, 3, 4, 6, 10, 11, 12, 13, 16, 17\]. Assuming so-called Boussinesq approximation \[3\], we obtain the basic hydrodynamic equations governing Rayleigh-Bénard convection as

\[
\begin{align*}
\partial_t v + (v \cdot \nabla)v + \frac{1}{\rho_0} \nabla p &= \nu \Delta v + g(\alpha(T - T_0) - 1)e_z, \\
\partial_t T + (v \cdot \nabla)T &= \kappa \Delta T, \quad u|_{z=0,h} = 0, \\
T|_{z=0} &= T_1, \quad T|_{z=h} = T_2, \quad T_1 > T_2, \\
v|_{t=0} &= u_0(x,y,z), \quad T|_{t=0} = T_0(x,y,z).
\end{align*}
\]

Here \(v = (v_1, v_2, v_3) \) is the velocity field of the fluid satisfying \(\nabla \cdot v = 0 \), \(p \) the pressure, \(\nu \) the kinematic viscosity, \(\alpha \) the thermal expansion coefficient, \(e_z = (0,0,1) \) the unit upward vector, \(T \) the temperature field of the fluid, \(\kappa \) the thermal diffusivity coefficient, \(T_0 \) the properly chosen mean temperature, and \(\rho_0 \) the density at the temperature \(T_0 \).
also impose periodic boundary conditions in the horizontal directions with period $2\pi h$.
There is a motionless steady state
\[
\begin{align*}
v_s & \equiv 0, \\
p_s & = -g \rho_0 + g \alpha ((T_s - T_0)z + \frac{T_2 - T_1}{2h} z^2), \\
T_s & = T_1 + \frac{T_2 - T_1}{h} z.
\end{align*}
\] (1.1)

We denote the perturbation of such a steady state (1.1) as:
\[
\begin{align*}
v & = v_s + u, \\
p & = p_s + P, \\
T & = T_s + \theta.
\end{align*}
\]

By using the units of the layer depth h as the typical length scale, $(gh)^{1/2}$ as the typical velocity, $(h/g)^{1/2}$ as the typical time, $\rho_0 gh$ as the typical pressure, and $T_1 - T_2$ as the typical temperature, we derive the nondimensional form of the Boussinesq system for the perturbation as:
\[
\begin{align*}
\partial_t u + (u \cdot \nabla) u + \nabla P & = \mu_1 \Delta u + \mu_1 \mu_2 R_a \theta \mathbf{e}_z, \\
\partial_t \theta + (u \cdot \nabla) \theta + u \cdot \mathbf{e}_z & = \mu_2 \Delta \theta,
\end{align*}
\] (1.2), (1.3)

with the following initial conditions:
\[
\begin{align*}
u|_{t=0} & = u_0(x, y, z), \\
\theta|_{t=0} & = \theta_0(x, y, z),
\end{align*}
\] (1.4)

and the boundary conditions
\[
\begin{align*}
u|_{z=0, h} & = 0, \\
\theta|_{z=0, h} & = 0, \\
u(x + 2\pi, y, z, t) & = u(x, y, z, t), \\
\theta(x + 2\pi, y, z, t) & = \theta(x, y, z, t).
\end{align*}
\] (1.5)

Here $\mu_1 = \nu g^{1/2} h^{-3/2}$ and $\mu_2 = \kappa g^{1/2} h^{-3/2}$, and the Rayleigh number is given by:
\[
R_a \equiv \frac{\alpha T_1 - T_2}{\mu_1 \mu_2} > 0.
\] (1.6)

In order to characterize the stability and instability of the motionless steady state (1.1), we introduce the critical Rayleigh number R_a^* as follows. For any integer $k \geq 1$, let $\Theta_k(z)$ be the minimizer of the following variational problem:
\[
\begin{align*}
R(k) & = \min_{\Theta \in B, k^2 \int_0^1 ((\partial_z \Theta)^2 + k^2 \Theta^2)dz = 1} \int_0^1 (|\partial_z^2 \Theta - k^2 \Theta|^2)dz,
\end{align*}
\] (1.7)

where the function space B is defined by
\[
\begin{align*}
\{ \Theta_k \in H^1, \\ \Theta_k|_{z=0, 1} = (\partial_z^2 - k^2) \Theta_k|_{z=0, 1} = \partial_z (\partial_z^2 - k^2) \Theta_k|_{z=0, 1} = 0 \}.
\end{align*}
\]

We define
\[
R_a^* = \min_{k \neq 0} R(k).
\] (1.8)

The stability problem in the Rayleigh-Bénard convection has been investigated in [3, 4, 6, 10, 12, 13]. The purpose of this paper is to identify the sharp Rayleigh number R_a^* for stability.
In section 2, we first establish that the motionless steady state (1.1) is linearly stable for \(R_a < R^* \) while linearly unstable for \(R_a > R^* \). We carefully study appropriate variational problems and obtain a complete set of eigenfunctions for the linearized Boussinesq system, which leads to a precise formula for the linear solutions.

In section 3, we prove the nonlinear stability for \(R_a < R^* \) by a standard semigroup approach (Theorem 3). In section 4, we prove that the motionless steady state (1.1) is nonlinear unstable for \(R_a > R^* \) (Theorem 8). Moreover, the dynamics of the nonlinear instability is characterized by the fastest exponential growing mode(s) constructed in section 2 for the linearized Boussinesq system, within the instability regime \(0 < \lambda_1 \). These growing mode(s) can exhibit interesting circular and role structures observed in experiments. The proof for the nonlinear instability is based on a general framework given in [8, 9]. The crucial step is to establish a bootstrap energy estimate (Lemma 6) in which we employ higher order anisotropic Sobolev norms in the presence of rigid boundary conditions.

We introduce the following notation: Let \((0, 2\pi)^2 \times (0, 2\pi) \) and \((E)^3 = E \times E \times E\), where \(E \) is any Banach space. The Hilbert space \(H \) denotes the completion of

\[
\{(u_1, u_2, u_3) | u_1, u_2, u_3 \in C^\infty_{per}((0, 2\pi)^2; C^2_0(0, 1)); \partial_x u_1 + \partial_y u_2 + \partial_z u_3 = 0\}
\]

(1.9)

with respect to the norm of \((L^2(Q))^3\), and endowed with the scalar product of \((L^2(Q))^3\), where \(Q = (0, 2\pi)^2 \times (0, 1) \).

We denote

\[
V = \{(u_1, u_2, u_3) | (u_1, u_2, u_3) \in H^1(Q) \cap L^2_{per}((0, 2\pi)^2; H^1_0(0, 1)); \\
\partial_x u_1 + \partial_y u_2 + \partial_z u_3 = 0\}
\]

(1.10)

endowed with the scalar product and the norm of \((H^1(Q))^3\).

2. Linear stability and instability. We study the linearized Boussinesq system around the steady state (1.1):

\[
\begin{align*}
\partial_t u + \nabla P &= \mu_1 \Delta u + R_a \mu_1 \mu_2 \theta e_2, \\
\partial_t \theta - u_3 &= \mu_2 \Delta \theta
\end{align*}
\]

(2.1)

with the initial condition (1.3) and boundary conditions (1.5). We rewrite the equations (1.20)–(1.22) as

\[
\partial_t (u, \theta) = L(u, \theta).
\]

(2.2)

Lemma 1. There exist countable eigenvalues \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq ... \) for the eigenvalue problem:

\[
\begin{align*}
-\lambda u + \nabla P &= \mu_1 \Delta u + R_a \mu_1 \mu_2 \theta e_2, \\
-\lambda \theta - u_3 &= \mu_2 \Delta \theta
\end{align*}
\]

(2.3)

The corresponding eigenfunctions \([u_k, \theta_k]_{k=1}^\infty\) form an orthonormal basis with respect to

\[
\langle [u, \theta], [\tilde{u}, \tilde{\theta}] \rangle = \langle u, \tilde{u} \rangle + R_a \mu_1 \mu_2 \langle \theta, \tilde{\theta} \rangle,
\]

(2.4)
with \([u_1, P_1, \theta_1]\) smooth. Moreover, for any initial condition \([u^0, \theta^0]\) \(\in L^2\), if
\[
[u^0, \theta^0] = \sum_k \gamma_k [u_k, \theta_k],
\]
then the solution to the linearized Boussinesq system \((2.7)\) is given by
\[
e^{Lt}[u^0, \theta^0] = \sum_k \gamma_k e^{-\lambda_k t}[u_k, \theta_k].
\]
(2.5)
In particular, there exists a constant \(C > 0\) such that
\[
||e^{Lt}[u^0, \theta^0]|| \leq Ce^{-\lambda_1 t}||[u^0, \theta^0]||.
\]
(2.6)

Proof. Recall the inner product of \((2.4)\) with the corresponding Hilbert space \(L^2_{R_a}\), and recall \(H\) and \(V\) in \((1.9)\) and \((1.10)\). We consider an equivalent eigenvalue problem as
\[
-\lambda u = \mu_1 \mathcal{P} \Delta u + R_a \mu_1 \mu_2 \mathcal{P} \{\theta e_z\},
\]
\[
-\lambda \theta = \mu_2 \Delta \theta + u_3,
\]
(2.7)
where \(\mathcal{P}\) denotes the projection \(\{L^2(Q)\}^3 \rightarrow H\). Clearly, by the definition of \((2.4)\), the operator
\[
\left(\begin{pmatrix} \mu_1 \Delta - \lambda_0 \end{pmatrix} \mathcal{I}
 R_a \mu_1 \mu_2 \left(\begin{array}{c} e_z \\ \mathcal{P} \{\theta e_z\} \end{array}\right) \right)^{-1}
\]
is a bounded, linear, compact, symmetric operator mapping \(L^2_{R_a}(Q) \cap \{H \times L^2\}\) into itself for \(\lambda_0\) large. The theory of compact, symmetric operators implies that all the eigenvalues of \((2.7)\) are real with finite multiplicity, \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots\). There are corresponding eigenfunctions \(\{[u_k, \theta_k]\}_{k=1}^\infty\) which make up an orthonormal basis of \(L^2_{R_a}(Q)\). The minimizer \((u_{\lambda_1}, \theta_{\lambda_1})\) of the following variational problem
\[
\min_{(U, \Theta) \in A} \int_Q \left(\mu_1 |\nabla U|^2 + R_a \mu_1 \mu_2 |\nabla \Theta|^2 - 2R_a \mu_1 \mu_2 U_{\theta} \right) dx dy dz
\]
is a weak solution of \((2.7)\), where the function space \(A\) is given by
\[
\left\{ U \in V, \Theta \in H^1(Q) \cap L^2_{per}((0, 2\pi)^2; H^1_0(0, 1)), \quad \|U\|^2 + R_a \mu_1 \mu_2 |\Theta|^{2} = 1 \right\}.
\]
Since \(F(U, \Theta)\) is coercive and convex, there exists at least one \((u_1, \theta_1) \in A\) solving \((2.7)\). By Lemma 1.1 in \[[5] \text{ Page 180}\], there exists a pressure field \(P_1 \in L^2_{per}((0, 2\pi)^2; L^2(0, 1))\) such that \((u_1, P_1, \theta_1)\) is the weak solution of the original \((2.3)\) with \(\lambda = \lambda_1\). Thanks to the periodic boundary condition, \((u_1, P_1, \theta_1)\) satisfies \((2.3)\) with \(\lambda = \lambda_1\) in the domain \(\Omega = \{(x, y, z)| - 2\pi < x, y < 4\pi, \quad 0 < z < 1\}\). Let \(\Omega_0\) be any bounded subdomain of \(\Omega\) with \(\partial \Omega_0 \in C^\infty\) and \(\partial \Omega_0 \cap \partial \Omega = \{(x, y, z)| - \pi \leq x, y \leq 3\pi; \quad z = 0, 1\}\). By Theorem 5.1 in \[[5] \text{ Page 218}\], we have \(u_1 \in (H^3_{per}((0, 2\pi)^2; H^3(0, 1)))^3 \cap V\) and \(P_1 \in H^2_{per}((0, 2\pi)^2; H^2(0, 1))\). By the regular theory of weak solutions to elliptic equations \([7]\), we deduce \(\theta_1 \in H^3_{per}((0, 2\pi)^2; H^3(0, 1)) \cap H^1_0(0, 1))\). By a bootstrap method, we have \(u_1 \in (H^m_{per}((0, 2\pi)^2; H^{m+1}(0, 1)))^3 \cap V, P_1 \in H^m_{per}((0, 2\pi)^2; H^m(0, 1))\). Thanks to \((2.3)\) and \((2.6)\) then follow.

Lemma 2. Recall the critical Rayleigh number \(R^*_a\) defined in \((1.8)\). If \(R_a < R^*_a\), then \(\lambda_1 > 0\). If \(R_a > R^*_a\), then \(\lambda_1 < 0\).
Proof. In order to construct an eigenfunction to (2.3), we first notice that it suffices to find the third component of \(u \) and \(\theta \). In fact, taking the curl of equation (2.1) and letting \(\omega = (\omega_1, \omega_2, \omega_3) = \text{curl} u = \nabla \times u \), we have

\[
\partial_t \omega = \mu_1 \Delta \omega + R_a \mu_1 \mu_2 (\nabla \times \mathbf{e}_z) \theta. \tag{2.8}
\]

Taking the curl of equation (2.1) once again, we have

\[
\partial_t (\nabla \times \omega) = -\partial_t \Delta u = -\mu_1 \Delta^2 u + R_a \mu_1 \mu_2 \left(\nabla \times (\nabla \times \mathbf{e}_z) \right) \theta. \tag{2.9}
\]

Since the horizontal components \(u_1 \) and \(u_2 \) of the velocity can be determined by \(u_3 \) and \(\omega_3 \), see [3], equations (2.3) are equivalent to the following equations:

\[
\begin{align*}
-\lambda \omega_3 &= \mu_1 \Delta \omega_3, \tag{2.10} \\
-\lambda \Delta u_3 &= \mu_1 \Delta^2 u_3 + R_a \mu_1 \mu_2 (\partial^2_x + \partial^2_y) \theta, \tag{2.11} \\
-\lambda \theta &= \mu_2 \Delta \theta + u_3.
\end{align*}
\]

We now construct an eigenfunction to (2.3) by first studying the following reduced variational problem for the third component function \(U_3(z) \) and \(\Theta(z) \). For any \(k \geq 1 \), define

\[
F_3(U_3, \Theta, R_a) \equiv \int_0^1 \{ \mu_1 |\partial^2_x U_3 - k^2 U_3|^2 + R_a \mu_1 \mu_2 k^2 (|\partial_x \Theta|^2 + k^2 |\Theta|^2) \} dz - 2R_a \mu_1 \mu_2 k^2 U_3 \Theta \}, \tag{2.12}
\]

where the function space is

\[
A_3 = \left\{ U_3 \in H^3_0, \Theta \in H^1_0, \int_0^1 (|\partial^2_x U_3|^2 + k^2 |U_3|^2 + R_a \mu_1 \mu_2 k^2 |\Theta|^2) \right\} dz = 1 \}. \tag{2.13}
\]

It is standard to show that there exists a minimizer \([U_3, \Theta]\) for such a variational problem, which satisfies the Euler-Lagrange equations

\[
\begin{align*}
-\lambda(R_a) (\partial^2_x - k^2) U_3 &= \mu_1 (\partial^2_x - k^2)^2 U_3 - R_a \mu_1 \mu_2 k^2 U_3, \tag{2.14} \\
-\lambda(R_a) \Theta &= \mu_2 (\partial^2_x - k^2) \Theta + U_3,
\end{align*}
\]

with boundary conditions: \(U_3 \big|_{z=0} = \partial_z U_3 \big|_{z=0} = 0, \quad \Theta \big|_{z=0} = 0 \). A direct computation shows that

\[
\left[-\frac{1}{k_0} \partial_z U_3(z) \sin \{ k_0 x \}, \quad 0, \quad U_3(z) \cos \{ k_0 x \}, \quad \Theta(z) \cos \{ k_0 x \} \right] \tag{2.15}
\]

is an eigenfunction with eigenvalue \(\lambda(R_a) \) for the original equations (2.3).

We first prove that if \(R_a > R^*_a \), then \(\lambda_1 \leq \lambda(R_a) < 0 \). By (1.8), there exists \(k_0 \geq 1 \) such that

\[
R(k_0) = \min_{\Theta \in B(k_0^2 \mu_1 \mu_2)} \int_0^1 |(\partial^2_x - k_0^2)^2 \Theta|^2 dz < R_a.
\]

Since the linear operator

\[
(\partial^2_x - k_0^2)^{-1} : L^2(0, 1) \rightarrow L^2(0, 1)
\]

is bounded, compact and symmetric, the eigenvalue $0 < R(k)$ is real with finite multiplicity and there exists a minimizer $\Theta_{k_0} \in B$ of $R(k_0)$. Letting

$$U_{3,k_0} \equiv -\mu_2 (\partial_z^2 - k_0^2) \Theta_{k_0},$$

we plug such a pair $[U_{3,k_0}, \Theta_{k_0}]$ into (2.11) to get

$$\lambda(R_a) \int_0^1 (|\partial_z U_{3,k_0}|^2 + k_0^2 |U_{3,k_0}|^2 + R_a \mu_1 \mu_2 k_0^2 |\Theta|^2) dz$$

$$\leq \int_0^1 \{\mu_1 |\partial_z U_{3,k_0} - k_0^2 U_{3,k_0}|^2 + R_a \mu_1 \mu_2 k_0^2 (|\partial_z \Theta_{k_0}|^2 + k_0^2 |\Theta_{k_0}|^2) - 2 R_a \mu_1 \mu_2 k_0^2 |U_{3,k_0} \Theta_{k_0}| dz$$

$$= \mu_1 \mu_2 \int_0^1 \{|(\partial_z^2 - k_0^2)^2 \Theta_{k_0}|^2 - R_a k_0^2 (|\partial_z \Theta_{k_0}|^2 + k_0^2 |\Theta_{k_0}|^2)| dz$$

$$\leq \mu_1 \mu_2 \int_0^1 \{|(\partial_z^2 - k_0^2)^2 \Theta_{k_0}|^2 - R(k_0) k_0^2 (|\partial_z \Theta_{k_0}|^2 + k_0^2 |\Theta_{k_0}|^2)| dz = 0.$$

Hence $\lambda(R_a) < 0$.

We now assume that $R_a < R^*_a$ and prove $\lambda_1 > 0$ by contradiction. If not, $\lambda_1 \leq 0$, then the first equation in (2.10) implies $\omega = 0$, so that the corresponding eigenfunction $[u_3, \theta]$ satisfies the last two equations in (2.10), or the Euler-Lagrange equations (2.14). This implies that, for all $k \geq 1$,

$$\lambda(R_a) \leq \lambda_1 \leq 0.$$

By a change of $\tilde{\Theta} = \sqrt{R_a} \Theta$, we deduce that $\lambda(R_a)$ takes the form

$$\min_{\int_0^1 \{|\partial_z U_3|^2 + k^2 |U_3|^2 + \mu_1 \mu_2 k^2 |\tilde{\Theta}|^2} dz = 1 \} F_3(U_3, \tilde{\Theta}, R_a),$$

(2.16)

where

$$F_3(U_3, \tilde{\Theta}, R_a) = \int_0^1 \{\mu_1 |\partial_z U_3 - k^2 U_3|^2 + \mu_1 \mu_2 k_0^2 (|\partial_z \tilde{\Theta}|^2 + k^2 |\tilde{\Theta}|^2)$$

$$- 2 \sqrt{R_a} \mu_1 \mu_2 k^2 |\partial_z U_3 | dz.$$ (2.17)

We claim that as a function of the Rayleigh number R_a, $\lambda(R_a)$ is continuous in R_a. In fact, for any two Rayleigh numbers R_{a_1} and R_{a_2}, we choose corresponding minimizers $[U_1, \Theta_1]$ and $[U_2, \Theta_2]$. Clearly, by (2.17), we have

$$|F_3(U_1, \tilde{\Theta}, R_{a_1}) - F_3(U_1, \tilde{\Theta}, R_{a_2})| \leq C |R_{a_1} - R_{a_2}|.$$

Letting $\tilde{\Theta} = \Theta_2$, we deduce that

$$\lambda(R_{a_1}) \leq F_3(U_1, \Theta_2, R_{a_1}) < \lambda(R_{a_2}) + C |R_{a_1} - R_{a_2}|.$$

Similarly, letting $\tilde{\Theta} = \Theta_1$, we have

$$\lambda(R_{a_2}) \leq F_3(U_2, \Theta_1, R_{a_2}) < \lambda(R_{a_1}) + C |R_{a_1} - R_{a_2}|.$$

Hence, the continuity of $\lambda(R_a)$ follows. Moreover, by letting $U_3 = \tilde{\Theta}$ in (2.17), we have

$$\lim_{R_a \to \infty} \lambda(R_a) = -\infty.$$
This implies that for any \(k \geq 1 \), there exists \(R_a^0(k) \leq R_a \) such that
\[
\lambda(R_a^0(k)) = 0.
\]
We now denote the corresponding minimizer of \(\lambda(R_a^0(k)) \) in (2.16) and (2.11) by \([U_3^0, \Theta^0]\), which satisfies (2.14) with \(\lambda(R_a^0(k)) = 0 \):
\[
0 = \mu_1(\partial_z^2 - k^2)^2 U_3^0 - R_a \mu_1 \mu_2 k^2 \Theta^0, \\
0 = \mu_2(\partial_z^2 - k^2) \Theta^0 + U_3^0.
\]
(2.18)
Equivalently, we have
\[
- (\partial_z^2 - k^2)^2 \Theta^0 - R_a^0(k) k^2 (\partial_z^2 - k^2) \Theta^0 = 0,
\]
which implies that \(R_a^0(k) \geq R(k) \). Therefore, by (1.8),
\[
R_a \geq R_a^0(k) \geq R^*_a,
\]
a contradiction. We therefore conclude the lemma.

3. Nonlinear stability for \(Ra < R^*_a \).

Theorem 3. If the Rayleigh number \(Ra < R^*_a \), then the motionless solution \((u_s, P_s, T_s)\) in (1.1) of system (1.2), (1.3) is nonlinear stable with respect to the norm of \(C(0, \infty; H^2(Q)) \cap W^1_\infty(0, \infty; L^2(Q)) \).

Proof. The unconditional nonlinear stability with respect to the norm of \(C(0, \infty; L^2(Q)) \) can be found in [6].

Now we only give the proof of nonlinear stability with respect to the norm of \(C(0, \infty; H^2(Q)) \cap W^1_\infty(0, \infty; L^2(Q)) \). Let
\[
A = \begin{pmatrix} (\mu_1 P \Delta) I & 0 \\ 0 & \mu_2 \Delta \end{pmatrix}, \\
B = \begin{pmatrix} 0 \\ \sqrt{K_0} \mu_1 \mu_2 e_z^t \end{pmatrix},
\]
where vector \(e_z = (0, 0, 1) \) and \(I \) is the 3 \(\times \) 3 identity matrix. If \(\tilde{\lambda} \) is an eigenvalue and \([\tilde{u}, \tilde{\theta}]\) is the corresponding eigenfunction of the following eigenvalue problem,
\[
(A + B)[\tilde{u}, \tilde{\theta}] = -\tilde{\lambda}[\tilde{u}, \tilde{\theta}],
\]
then \(\lambda = \tilde{\lambda} \) is the eigenvalue and \([u, \theta] = [\tilde{u}, \tilde{\theta} / \sqrt{R_a \mu_1 \mu_2}] \) is the corresponding eigenfunction of the eigenvalue problem (2.3). Similarly, for the eigenvalue \(\lambda \) and the corresponding eigenfunction \([u, \theta] \) of (2.3), then \(\tilde{\lambda} = \lambda \) is the eigenvalue and \([\tilde{u}, \tilde{\theta}] = [u, \sqrt{R_a \mu_1 \mu_2} \theta] \) is the corresponding eigenfunction of the eigenvalue problem (3.1). Thus \(\lambda_1 = \lambda_1 > 0 \).

It is well known [14] [15] that \(A + B \) is the infinitesimal generator of the analytic semigroup \(e^{t(A+B)} : H \times L^2(Q) \rightarrow H \times L^2(Q) \) with
\[
\|e^{t(A+B)}\| \leq C e^{-\lambda_1 t}, \quad \forall t > 0, \\
\|(-A - B)^{1/2} e^{t(A+B)}\| \leq C t^{-1/2} e^{-\lambda_1 t}, \quad \forall t > 0,
\]
(3.2)
where \(\lambda_1 > 0 \) is defined in Lemma 1. Since \((-A - B)^{-1} : H \times L^2(Q) \to H \times L^2(Q)\) and \(A(-A - B)^{-1} : H \times L^2(Q) \to H \times L^2(Q)\) are both selfadjoint linear bounded operators, we have

\[
\|(-A)^{1/2} e^{t(A+B)} [u, \theta]\| = \left(\|(-A)(-A - B)^{-1}(-A - B)^{-1/2} e^{t(A+B)} [u, \theta]\|, \|(-A - B)^{-1/2} e^{t(A+B)} [u, \theta]\|\right)^{1/2} \\
\leq \|(-A)(-A - B)^{-1}\|^{1/2} \|(A - B)^{-1/2} e^{t(A+B)} [u, \theta]\| \\
\leq C t^{-1/2} e^{-\lambda_1 t} \|[u, \theta]\|, \quad \forall t > 0, \quad [u, \theta] \in H \times L^2(Q).
\]

Equations (1.2) and (1.3) can be rewritten in the following equivalent form:

\[
[u(t), \sqrt{R_{a_1} \mu_2} \theta(t)] \\
= e^{t(A+B)} (u_0, \sqrt{R_{a_1} \mu_2} \theta_0) - \int_0^t e^{(t-s)(A+B)} \left((u \cdot \nabla) u(s), (u \cdot \nabla) (\sqrt{R_{a_1} \mu_2} \theta(s))\right) ds.
\]

Applying (3.2), (3.4) and (3.5), we have

\[
\|u(t)\|_{L^2} + \|\theta(t)\|_{L^2} \\
\leq C_1 e^{-\lambda_1 t} \left(\|u_0\|_{L^2} + \|\theta_0\|_{L^2}\right) \\
+ C_2 \int_0^t e^{-\lambda_1 (t-s)} \left(\|u \cdot \nabla\| u(s)\|_{L^2} + \|(u \cdot \nabla) \theta\|_{L^2}\right) ds \\
\leq C_1 \left(\|u_0\|_{L^2} + \|\theta_0\|_{L^2}\right) + C_2 \sup_{0 \leq s \leq T} \left(\|u(s)\|_{H^1}^2 + \|\theta(s)\|_{H^1}^2\right), \quad \forall T \geq t,
\]

\[
\|\Delta u(t)\|_{L^2} + \|\Delta \theta(t)\|_{L^2} \leq C_1 e^{-\lambda_1 t} \left(\|\Delta u_0\|_{L^2} + \|\Delta \theta_0\|_{L^2}\right) \\
+ C_2 \int_0^t (t-s)^{-1/2} e^{-\lambda_1 (t-s)} \left(\|\nabla \{u \cdot \nabla\} u(s)\|_{L^2} + \|\nabla \{u \cdot \nabla\} \theta(s)\|_{L^2}\right) ds \\
\leq C_1 \left(\|\Delta u_0\|_{L^2} + \|\Delta \theta_0\|_{L^2}\right) + C_2 \sup_{0 \leq s \leq T} \left(\|u(s)\|_{H^2}^2 + \|\theta(s)\|_{H^2}^2\right), \quad \forall T \geq t.
\]

Let

\[
E(T) = \sup_{0 \leq s \leq T} \left(\|u(s)\|_{H^2} + \|\theta(s)\|_{H^2}\right).
\]

Then we have

\[
E(T) \leq C_1 \left(\|u_0\|_{H^2} + \|\theta_0\|_{H^2}\right) + C_2 E^2(T), \quad \forall T \geq 0,
\]

where the positive constants \(C_1 \) and \(C_2 \) are independent of \(T \). Therefore, if \(\|u_0\|_{H^2} + \|\theta_0\|_{H^2} \) is small enough, then there exists a unique solution \((u, \theta) \in C\left([0, \infty); (H^2(Q))^4\right)\) of (1.2) and (1.3) such that

\[
\|u(t)\|_{H^2} + \|\theta(t)\|_{H^2} \leq 2C_1 \left(\|u_0\|_{H^2} + \|\theta_0\|_{H^2}\right), \quad \forall t \geq 0,
\]

and our theorem follows. \(\square \)
4. Instability of motionless state. We now turn to the nonlinear problem (1.2) and (1.3). We first recall a general framework for nonlinear instability as:

Lemma 4 (Bootstrap Instability [8]). Assume that \(L \) is a linear operator on a Banach space \(X \) with norm \(\| \cdot \| \), and \(e^{tL} \) generates a strongly continuous semigroup on \(X \) such that

\[
\| e^{tL} \| (X, X) \leq C_L e^{\lambda t} \tag{4.1}
\]

for some \(C_L \) and \(\lambda > 0 \). Assume a nonlinear operator \(N(y) \) on \(X \) and another norm \(\| \cdot \| \), and constant \(C_N \), such that

\[
\| N(y) \| \leq C_N \| y \| \tag{4.2}
\]

for all \(y \in X \) and \(\| y \| < \infty \). Assume for any solution \(y(t) \) to the equation

\[
y' = Ly + N(y) \tag{4.3}
\]

with \(\| y(t) \| \leq \sigma \) that there exists \(C_\sigma > 0 \) such that for any \(\epsilon > 0 \), there exists \(C_\epsilon > 0 \) such that the following sharp energy estimate holds:

\[
\frac{d}{dt} \| y(t) \| \leq \epsilon \| y(t) \| + C_\sigma \| y(t) \| + C_\epsilon \| y(t) \|. \tag{4.4}
\]

Consider a family of initial data \(y^\delta(0) = \delta y_0 \) with \(\| y_0 \| = 1 \) and \(\| y_0 \| < \infty \) and let \(\beta_0 \) be a sufficiently small (fixed) number. Then there exists some constant \(C > 0 \) such that if

\[
0 \leq t \leq T^\delta \equiv \frac{1}{\lambda} \log \frac{\beta_0}{\delta},
\]

then we have

\[
\| y(t) - \delta e^{tL} y_0 \| \leq C (\| y_0 \|^2 + 1)\delta^2 e^{2\lambda t}. \tag{4.5}
\]

In particular, if there exists a constant \(C_p \) such that \(\| \delta e^{tL} y_0 \| \geq C_p \delta e^{\lambda t} \), then there exists an escape time \(T^{\text{esc}} \leq T^\delta \) such that

\[
\| y(T^{\text{esc}}) \| \geq \tau_0 > 0,
\]

where \(\tau_0 \) depends explicitly on \(C_L, C_N, C_\sigma, C_p, \lambda, y_0, \sigma \) and is independent of \(\delta \).

To apply such a method, we need to verify (4.4) for an appropriate Sobolev norm \(\| \cdot \| \). Let \(\| \cdot \| = \| \cdot \|_{L^2} \), \(D_{x,y}^k = \sum_{k_1 + k_2 = k} \delta_{x_1}^k \delta_{y_2}^k \) and

\[
E_0 = \| u(t) \|^2 + \| \theta(t) \|^2,
\]

\[
E_k = E_0 + \| \nabla u(t) \|^2 + \| \nabla \theta(t) \|^2 + \| D_{x,y}^k \nabla u(t) \|^2 + \| D_{x,y}^k \nabla \theta(t) \|^2.
\]

Lemma 5. Let \(k \geq 2 \). Then

\[
\| (u \cdot \nabla) u \| + \| (u \cdot \nabla) \theta \| \leq CE_k. \tag{4.7}
\]

Proof. Applying Sobolev imbedding theorems and Hölder’s inequality, we have

\[
u^2(x, y, z, t) = 2 \int_0^z u_z(x, y, s, t) ds \leq C \int_0^z \| u_z(\cdot, s, t) \|_{H^2_{x,y}} \| u(\cdot, s, t) \|_{H^2_{x,y}} ds,
\]

\[
\| u(t) \|_{L^\infty} \leq C(\| u(t) \| + (\| \partial_x^2 + \partial_y^2 \| u(t) \| + \| \partial_z u(t) \| + \| (\partial_x^2 + \partial_y^2) \partial_z u(t) \|).
\]
By using the multiplicative inequality [1, p. 323], we have
\[\|(u \cdot \nabla)u\| + \|(u \cdot \nabla)\theta\| \leq \|u\|_{L^\infty} (\|\nabla u\| + \|\nabla \theta\|) \leq CE_k, \]
where we have used the following estimates:
\[\|\nabla D_{x,y}^{k-l} u\| \leq C (\|\nabla u\|^l/k \|\nabla D_{x,y}^k u\|^{(k-l)/k}, \quad \forall 1 \leq l \leq k - 1. \]

Lemma 6. Let \(k \geq 3 \). Then we have
\[\frac{d}{dt} E_k \leq \epsilon E_k + CE_k^2 + C \epsilon \epsilon_0, \quad \forall \epsilon > 0. \] (4.8)

Proof. Taking scalar products of \(u \) with equation (1.2) and \(\theta \) with equation (1.3), we have
\[\frac{d}{dt} \|u\|^2 + 2 \mu_1 \|\nabla u\|^2 \leq 2 R_2 \|u_3\| \|\theta\|, \]
\[\frac{d}{dt} \|\theta\|^2 + 2 \mu_2 \|\nabla \theta\|^2 \leq 2 \|u_3\| \|\theta\|. \]
Taking scalar products of \(u_t \) with equation (1.2) and \(\Delta \theta \) with equation (1.3), we have
\[\frac{d}{dt} \mu_1 \|\nabla u\|^2 + 2 \|u_t\|^2 \leq 2 (u \cdot \nabla) u + \|\partial_t u_3\|^2 + C \|\theta\|^2, \]
\[\frac{d}{dt} \|\nabla \theta\|^2 + 2 \mu_2 \|\Delta \theta\|^2 \leq C (u \cdot \nabla) \theta + \mu_2 \|\Delta \theta\|^2 + C \|u_3\|^2. \]
Taking scalar products of \(D_{x,y}^{2k} u_t \) with equation (1.2) and \(D_{x,y}^{2k} \Delta \theta \) with equation (1.3), we have
\[\frac{d}{dt} \mu_1 \|\nabla D_{x,y}^k u\|^2 + 2 \|D_{x,y}^k u_t\|^2 \leq 2 \|D_{x,y}^k (u \cdot \nabla) u\|^2 + \|D_{x,y}^k u_t\|^2 + C \|D_{x,y}^k \theta\|^2, \]
\[\frac{d}{dt} \|\nabla D_{x,y}^k \theta\|^2 + 2 \mu_2 \|\Delta D_{x,y}^k \theta\|^2 \leq C \|D_{x,y}^k (u \cdot \nabla) \theta\|^2 + \mu_2 \|\Delta D_{x,y}^k \theta\|^2 + C \|D_{x,y}^k u\|^2. \]

By Hölder’s inequality, the Sobolev imbedding theorems, the multiplicative inequality [1, p. 323] and (4.7), \(\|D_{x,y}^k (u \cdot \nabla) u\| \) is bounded by
\[C \sum_{l=0}^{k-2} \|D_{x,y}^l u\|_{L^\infty} \|D_{x,y}^{k-l} \nabla u\| + 2 \|D_{x,y}^{k-1} u\|_{L^\infty(0,1;L^2_{x,y})} \|D_{x,y} \nabla u\|_{L^2(0,1;L^\infty_{x,y})} \]
\[+ 2 \|D_{x,y}^k u\|_{L^\infty(0,1;L^2_{x,y})} \|\nabla u\|_{L^2(0,1;L^\infty_{x,y})} \leq CE_k + C \|D_{x,y}^{k-1} u\|_{H^1(0,1;L^2_{x,y})} \|D_{x,y} \nabla u\|_{L^2(0,1;H^2_{x,y})} \]
\[+ C \|D_{x,y}^k u\|_{H^2(0,1;L^2_{x,y})} \|\nabla u\|_{L^2(0,1;H^2_{x,y})} \leq CE_k, \]
and \(\|D_{x,y}^k (u \cdot \nabla \theta)\| \) is bounded by
\[
C \sum_{l=0}^{k-2} \|D_{x,y}^l u\|_{L^\infty} \|\nabla D_{x,y}^{k-l} \theta\|_{L^2} + C \|D_{x,y}^{k-l} u\|_{L^\infty_0 (0,1;L^2_2)} \|\nabla \theta\|_{L^2_2 (0,1;L^\infty_0)}
+ C \|D_{x,y}^k u\|_{L^\infty_0 (0,1;L^2_2)} \|\nabla \theta\|_{L^2_2 (0,1;L^\infty_0)}
\leq CE_k + C \|D_{x,y}^{k-1} u\|_{H^2_2 (0,1;L^2_2)} \|\nabla \theta\|_{L^2_2 (0,1;H^2_2)}
+ C \|D_{x,y}^k u\|_{H^1_2 (0,1;L^2_2)} \|\nabla \theta\|_{L^2_2 (0,1;H^2_2)}
\leq CE_k.
\]
Here we have used the following estimates:
\[
\|\nabla D_{x,y}^{k-l} \theta\| \leq C \|\nabla \theta\|^{l/k} \|\nabla D_{x,y}^k \theta\|^{(k-l)/k}, \quad \forall 1 \leq l \leq k - 1.
\]
Since
\[
C \|D_{x,y}^k u\|^2 + C \|D_{x,y}^k \theta\|^2 \leq C \|D_{x,y}^{k+1} u\|^{2(k+1)} \|\theta\|^{2(k+1)}
+ C \|D_{x,y}^{k+1} \theta\|^{2(k+1)} \|\theta\|^{2(k+1)}
\leq \epsilon \left(\|D_{x,y}^{k+1} u\|^2 + \|D_{x,y}^{k+1} \theta\|^2 \right) + C \epsilon \left(\|u\|^2 + \|\theta\|^2 \right),
\]
by putting together all these estimates, we obtain (4.8).

Since \(\lambda_1 < 0 \) for \(Ra > Ra^* \), there exists some corresponding wave numbers \(k^* \geq 1 \) such that \(\lambda^* = \lambda(Ra) < 0 \), where \(\lambda(Ra) \) is defined in (2.12) with \(k = k^* \), and the maximal growth rate is given by \(-\lambda^* > 0 \). Let \([u_k; \Theta_k] \) be the minimizer of (2.12).

Definition 7. We define a smooth generic profile for the initial perturbation as
\[
[\tilde{u}, \tilde{\theta}] = (\tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \tilde{\theta})
= \sum_{k_1^2 + k_2^2 = k^2} \left(V_{1,k_1,k_2}, V_{2,k_1,k_2}, v_{k_1,k_2} U_k (z), \vartheta_{k_1,k_2} \Theta_k(z) \right) e^{ik_1 x + ik_2 y}
\]
such that \(k_1^2 + k_2^2 = (k^*)^2 \), then either \(v_{k_1,k_2} \) or \(\vartheta_{k_1,k_2} \) is nonzero. Moreover, \(V_{1,0,0} = V_{2,0,0} = 0 \),
\[
V_{1,k_1,k_2} = \frac{ik_1}{k^2} v_{k_1,k_2} \partial_z U_k (z), \quad k_1^2 + k_2^2 = k^2 \geq 1,
V_{2,k_1,k_2} = \frac{ik_2}{k^2} v_{k_1,k_2} \partial_z U_k (z), \quad k_1^2 + k_2^2 = k^2 \geq 1.
\]

Therefore, from Lemmas 4–6, we have

Theorem 8. Suppose that the Rayleigh number \(Ra > Ra^* \). Let \([u^\delta; \theta^\delta] \) be a solution to the equations (17.2) and (17.9) with initial value
\[
[u^\delta(0); \theta^\delta(0)] = \delta[\tilde{u}, \tilde{\theta}],
\]
where \([\tilde{u}, \tilde{\theta}] \) is a generic profile defined in (4.9) and \(\|\tilde{u}, \tilde{\theta}\| = 1 \). Then,
\[
\|\|u^\delta(t); \theta^\delta(t)\| - \sum_{k_1^2 + k_2^2 = (k^*)^2} \delta^2 e^{tk} \left(V_{1,k_1,k_2}, V_{2,k_1,k_2}, v_{k_1,k_2} U_k (z), \vartheta_{k_1,k_2} \Theta_k(z) \right) e^{ik_1 x + ik_2 y} \right) \leq C \left(1 + \|\nabla \tilde{u}, \nabla \tilde{\theta}\|^2 + \|\partial_z^2 \nabla \tilde{u}, \partial_z^2 \nabla \tilde{\theta}\|^2 \right) \delta^2 e^{-2\lambda^* t}, \quad k \geq 3,
\]
(4.10)
for any $\delta \leq \delta_0$ sufficiently small, and $0 \leq t \leq T^d$, where $||[u, \theta]|| = ||u_1|| + ||u_2|| + ||u_3|| + ||\theta||$.

Remark 9. We note that $e^{tL}(V_1, k_1, k_2, V_2, k_1, k_2, v_{k_1, k_2}U_k(z), \vartheta_{k_1, k_2}\Theta_k(z))e^{i(k_1^2 + k_2^2)y}$ is given explicitly in (2.20). Clearly, for $k_1^2 + k_2^2 = (k^*)^2$ and v_{k_1, k_2} not both zero,

$$
||e^{tL}(V_1, k_1, k_2, V_2, k_1, k_2, v_{k_1, k_2}U_k(z), \vartheta_{k_1, k_2}\Theta_k(z))e^{i(k_1^2 + k_2^2)y}|| \geq C e^{-\lambda t^d}
$$

for some positive constant C. Then, from Lemma 4 and Theorem 8, the motionless state (u_s, P_s, T_s) of the system (1.2) and (1.3) is nonlinear unstable.

The proof of Theorem 8 follows from Lemmas 4–6 with $||\cdot|| = E^1_k$ and $||\cdot|| = E^3_0$. By (2.5), we split $\delta e^{\epsilon L}(\epsilon \hat{u}, \epsilon \hat{\theta})$ in Lemma 4 into maximal growing modes

$$
\delta e^{tL}(V_1, k_1, k_2, V_2, k_1, k_2, v_{k_1, k_2}U_k(z), \vartheta_{k_1, k_2}\Theta_k(z))e^{i(k_1^2 + k_2^2)y}, \quad \forall k_1^2 + k_2^2 = (k^*)^2
$$

and the remaining modes to conclude the proof.

References

