BOUNDED SOLUTIONS FOR THE BOLTZMANN EQUATION

BY

YAN GUO

Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Dedicated to Professor W. A. Strauss on the occasion of his 70th birthday

Abstract. In either a periodic box \(T^d \) or \(\mathbb{R}^d \) (1 \(\leq \) \(d \) \(\leq \) 3), we establish a unified \(L^\infty \) estimate for solutions near Maxwellians for the Boltzmann equation, in terms of natural mass, momentum, energy conservation and the entropy inequality.

We study \(L^\infty \) estimates for the Boltzmann equation

\[
\partial_t F + v \cdot \nabla_x F = \frac{1}{\kappa} Q(F, F), \quad F(0, x, v) = F_0(x, v),
\]

where \(F(t, x, v) \geq 0 \) is the density of particles of velocity \(v \in \mathbb{R}^3 \), and position \(x \in \Omega = \mathbb{R}^d \) or \(T^d \), a periodic box, for 1 \(\leq d \) \(\leq \) 3. The Knudsen number \(\kappa \) is a bounded constant.

For simplicity we assume a hard-sphere interaction for the collision kernel \(Q \). We define a global Maxwellian given by

\[
\mu = \frac{\rho}{(2\pi T)^{3/2}} \exp \left\{ -\frac{|v - u|^2}{2T} \right\},
\]

where \(\rho, u, T \) are independent of \(t \) and \(x \). Our main result is

\textbf{Theorem 1.} Assume that the excess conservations of mass, momentum and energy,

\[
\begin{align*}
\int \int \{ F(t, x, v) - \mu \} dvdx &= \int \int \{ F_0(x, v) - \mu \} dvdx \equiv M_0, \\
\int \int v \{ F(t, x, v) - \mu \} dvdx &= \int \int v F_0(x, v) dvdx \equiv J_0, \\
\int \int |v|^2 \{ F(t, x, v) - \mu \} dvdx &= \int \int |v|^2 \{ F_0(x, v) - \mu \} dvdx \equiv E_0,
\end{align*}
\]

as well as the excess entropy inequality, hold:

\[
\mathcal{H}(F(t)) - \mathcal{H}(\mu) \leq \mathcal{H}(F_0) - \mathcal{H}(\mu),
\]

Received December 31, 2008.

\[2000 \text{ Mathematics Subject Classification.} \text{ Primary 35Qxx; Secondary 35Bxx.} \]

\[E-mail \text{ address: guoy@dam.brown.edu} \]

\(\text{©2009 Brown University} \)

Reverts to public domain 28 years from publication
where $\mathcal{H}(g) \equiv \int \int g \ln gdvdx$. Then for any $\beta \geq 0$, there exists $C > 0$ such that
\begin{equation}
\sup_{0 \leq t \leq \infty} \left\| \frac{1 + |v|^2}{\sqrt{\mu}} \frac{\beta}{\sqrt{\mu}} (F(t) - \mu) \right\|_{\infty} \leq C \left\| \frac{1 + |v|^2}{\sqrt{\mu}} (\mu - \mu) \right\|_{\infty} \tag{5}
\end{equation}
provided the right-hand side is sufficiently small.

Both the excess conservation laws (3) and the excess entropy inequality (4) are clearly valid when Ω is a periodic box. We remark that in the case $\Omega = \mathbb{R}^d$, local-in-time solutions satisfying both (3) and (4) can be constructed via the following approximate Boltzmann equation with finite propagation of speed in the physical space:
\[\partial_t F_n + v \mathbf{1}_{\{|v| \leq n\}} \cdot \nabla_x F_n = \frac{1}{\kappa} Q(F_n, F_n) \]
as $n \to \infty$.

It is well known that the pointwise control of F is crucial for uniqueness when β is large. The new L^∞ estimate (5) is solely based on the most natural a priori estimates in the Boltzmann theory. Even though no time decay rate is obtained, the proof is direct and robust.

Proof. Denote the weight function by $w(v) = \{1 + |v|^2\}^\beta$ and define
\[h = w(v) \times \frac{F - \mu}{\sqrt{\mu}}. \]
Recall the standard linearized Boltzmann operator as
\[L_g = -\frac{1}{\sqrt{\mu}} \{Q(\mu, \sqrt{\mu}g) + Q(\sqrt{\mu}g, \mu)\} = \{\nu(v) + K\}g, \]
where the collision frequency $\nu(v) = c \int |v - u| \mu dv \sim |v| + 1$. Letting $K_wg \equiv wK(\frac{g}{w})$, we obtain
\[\partial_t h + v \cdot \nabla_x h + \frac{\nu}{\kappa} h = \frac{1}{\kappa} wG\left(\frac{h}{w}, \frac{\bar{v}}{w}\right), \]
where $G(g_1, g_2) = \frac{1}{\sqrt{\mu}} Q(\sqrt{\mu}g_1, \sqrt{\mu}g_2)$.

For any (t, x, v), we denote $\bar{v} = (v_1, ..., v_d)$. Integrating along its backward trajectory $\frac{dX(s)}{ds} = V(s), \frac{dV(s)}{ds} = 0$, we express $h(t, x, v)$ as
\begin{align*}
\exp\left\{-\frac{\nu t}{\kappa}\right\} h(0, x - \bar{v}t, v) + \int_0^t \exp\left\{-\frac{\nu (t-s)}{\kappa}\right\} \left(\frac{1}{\kappa} K_w h\right)(s, x - \bar{v}(t-s), v) ds \\
+ \int_0^t \exp\left\{-\frac{\nu (t-s)}{\kappa}\right\} \frac{w}{\kappa} \Gamma\left(\frac{h}{w}, \frac{\bar{v}}{w}\right)(s, x - \bar{v}(t-s), v) ds. \tag{6}
\end{align*}
Since $\left|\frac{w}{\kappa} \Gamma\left(\frac{h}{w}, \frac{\bar{v}}{w}\right)\right| \leq C\nu(v)||h||^2_{\infty}$ from Lemma 10 of [2], and since
\[\int_0^t \exp\left\{-\frac{\nu (t-s)}{\kappa}\right\} \nu ds \leq O(\kappa), \]
the last term in (6) is bounded by \((\nu(v)\) is bounded from below)

\[
\frac{C}{\kappa} \int_0^t \exp\left\{-\frac{\nu(t-s)}{\kappa}\right\} \{\nu(v)|h(s, x-\bar{v}(t-s), v)| + \|h(s)\|_\infty\} \|h(s)\|_\infty ds \leq C \sup_{0 \leq s \leq t} \|h(s)\|_\infty^2.
\]

(7)

We shall mainly concentrate on the second term in (6). Let \(k(v, v')\) be the corresponding kernel associated with \(K\). We now use (6) again to evaluate \(\{k_w h\}(s, x-(t-s)\bar{v}) = \int k_w(v, v')h(s, x-\bar{v}(t-s), v')dv'.\) By (7), we can bound the above by

\[
\frac{1}{\kappa} \int_0^t \exp\left\{-\frac{\nu(t-s)}{\kappa}\right\} \int \mathbb{R}^3 |k_w(v', v')\exp\left\{-\frac{\nu_s}{\kappa}\right\} h(0, x-\bar{v}(t-s) - \bar{v}' s, v') dv'ds
\]

\[
+ \frac{1}{\kappa^2} \int_0^t \exp\left\{-\frac{\nu(t-s)}{\kappa}\right\} \int \mathbb{R}^3 \times \mathbb{R}^3 |k_w(v', v')k_w(v', v'')| \times \int_0^s \exp\left\{-\frac{\nu' s}{\kappa}\right\} |h(s_1, x-\bar{v}(t-s) - \bar{v}'(s-s_1), v'')| dv'dv'' ds_1 ds
\]

\[
+ \frac{C}{\kappa} \int_0^t \exp\left\{-\frac{\nu(t-s)}{\kappa}\right\} \times \sup_v \int \mathbb{R}^3 |k_w(v, v')| dv' \times \{\sup_{0 \leq s \leq t} \|h(s)\|_\infty^2\},
\]

(8)

where \(k_w(\cdot) = w k(\cdot)\) and \(\bar{v}' = (v'_1, ..., v'_d).\) Since \(\sup_v \int \mathbb{R}^3 k_w(|v, v'|) dv' < +\infty\) from Lemma 7 of [2], the first and the third terms above are bounded by \(C\|h(0)\|_\infty + C\{\sup_{0 \leq s \leq t} \|h(s)\|_\infty\}^2\).

We now concentrate on the second term in (8), which will be estimated as in the proof of Theorem 21 in [2].

Case 1. For \(|v| \geq N.\) By Lemma 7 in [2],

\[
\int \int |k_w(v, v')k_w(v', v'')| dv' dv'' \leq \frac{C}{1 + |v|} \leq \frac{C}{N}.
\]

We therefore can find an upper bound for the second term in this case as

\[
\frac{C}{\kappa^2 N} \int_0^t \exp\left\{-\frac{\nu(v')(t-s)}{\kappa}\right\} \times \int_0^s \exp\left\{-\frac{\nu(v')(s-s_1)}{\kappa}\right\} \|h(s_1)\|_\infty ds_1 ds
\]

\[
\leq \frac{C}{N} \sup_{0 \leq s \leq t} \|h(s)\|_\infty.
\]

Case 2. For \(|v| \leq N, |v'| \geq 2N,\) or \(|v'| \leq 2N, |v''| \geq 2N.\) Notice that we have either \(|v' - v| \geq N\) or \(|v'' - v'| \geq N,\) and either one of the following are valid correspondingly for some \(\eta > 0:\)

\[
|k_w(v, v')| \leq e^{-\frac{\eta}{N^2}} |k_w(v, v')e^{\frac{\eta}{N^2}|v''|^2}|, \quad |k_w(v', v'')| \leq e^{-\frac{\eta}{N^2}} |k_w(v', v'')e^{\frac{\eta}{N^2}|v''|^2}|.
\]

(9)
From Lemma 8 in [2], both \(\int |k_w(v, v')e^{\frac{N}{2}v - v'|^2} | \) and \(\int |k_w(v', v'')e^{\frac{N}{2}v' - v''|^2} | \) are still finite. We use (9) to combine the cases of \(|v' - v| \geq N\) or \(|v' - v''| \geq N\) as:

\[
\int_0^t \int_{v_1}^{v_2} \ldots \left\{ \int_{|v| \leq N, |v'| \geq 2N} + \int_{|v'| \leq 2N, |v''| \geq 3N} \right\}
\]

\[
\leq C \int_0^t \int_{v_1}^{v_2} \ldots \left\{ \int_{|v| \leq N, |v'| \geq 2N} |k_w(v, v')|dv' + \sup_{v'} \int_{|v'| \leq 2N, |v''| \geq 3N} |k_w(v', v'')|dv'' \right\}
\]

\[
\leq C_0 e^{-\frac{2N^2}{k^2}} \int_0^t \int_{v_1}^{v_2} \exp\left\{-\frac{\nu(t - s)}{\kappa}\right\} \exp\left\{-\frac{v(s - s_1)}{\kappa}\right\} ||h(s1)||_\infty ds_1 ds
\]

\[
\leq C_0 e^{-\frac{2N^2}{k^2}} \sup_{0 \leq s \leq t} \{|h(s)|\infty \}. \quad (10)
\]

Case 3. \(s - s_1 \leq \varepsilon\kappa \), for \(\varepsilon > 0 \) small. We now can simply bound the second term in (8) by

\[
\frac{1}{\kappa^2} \int_0^t \int_{s - \kappa}^{s} C \exp\left\{-\frac{\nu(t - s)}{\kappa}\right\} \exp\left\{-\frac{v(s - s_1)}{\kappa}\right\} ||h(s1)||_\infty ds_1 ds
\]

\[
\leq C \sup_{0 \leq s \leq t} \{|h(s)|\infty \} \times \frac{1}{\kappa} \int_0^t \exp\left\{-\frac{\nu(t - s)}{\kappa}\right\} ds \times \int_{s - \kappa}^{s} \frac{1}{\kappa} ds_1
\]

\[
\leq \varepsilon C \sup_{0 \leq s \leq t} \{|h(s)|\infty \}. \quad (11)
\]

Case 4. \(s - s_1 \geq \varepsilon\kappa \), and \(|v| \leq N, |v'| \leq 2N, |v''| \leq 3N\). This is the last remaining case because if \(|v'| > 2N\), it is included in Case 2; while if \(|v''| > 3N\), either \(|v'| \leq 2N\) or \(|v'| \geq 2N\) are also included in Case 2. We now can bound the second term in (8) by

\[
C \int_0^t \int_{B} \int_{s - \kappa}^{s - \kappa} e^{-\frac{\nu(t - s)}{\kappa}} e^{-\frac{\nu(s - s_1)}{\kappa}} |k_w(v, v')k_w(v', v'')h(s, x_1 - (s - s_1)v', v'')|,
\]

where \(B = \{|v'| \leq 2N, |v''| \leq 3N\} \) and \(x_1 = x - (t - s)v \). Notice that \(k_w(v, v') \) has a possible integrable singularity of \(\frac{1}{v - v''} \). We can choose \(k_N(v, v') \) smooth with compact support such that

\[
\sup_{|p| \leq 3N} \int_{v' \mid v' \leq 3N} |k_N(p, v') - k_w(p, v')| dv' \leq \frac{1}{N}, \quad (12)
\]

Splitting

\[
k_w(v, v')k_w(v', v'') = \{k_w(v, v') - k_N(v, v')\}k_w(v', v'') + \{k_w(v', v'') - k_N(v', v'')\}k_N(v, v') + k_N(v, v')k_N(v', v''),
\]

we can use such an approximation (12) to bound the above \(s_1, s \) integration by

\[
\frac{C}{N} \sup_{0 \leq s \leq t} \{|h(s)|\infty \} \times \left\{ \sup_{|v'| \leq 2N} \int |k_w(v', v'')|dv'' + \sup_{|v| \leq 2N} \int |k_w(v, v')|dv' \right\}
\]

\[
+ C \int_0^t \int_{B} \int_{s - \kappa}^{s - \kappa} e^{-\frac{\nu(t - s)}{\kappa}} e^{-\frac{\nu(s - s_1)}{\kappa}} |k_N(v, v')k_N(v', v'')h(s, x_1 - (s - s_1)v', v'')|, \quad (13)
\]
We now make use of the conservation laws \(^{[3]}\) and the entropy inequality \(^{[4]}\) to estimate the last term. Recall from the Taylor expansion,
\[
\mathcal{H}(F(t)) - \mathcal{H}(\mu) = \int \int \{\ln \mu + 1\} \{F - \mu\} + \int \int \frac{(F(t) - \mu)^2}{2F} \leq \mathcal{H}(F_0) - \mathcal{H}(\mu),
\]
where \(\tilde{F}\) is between \(F(t)\) and \(\mu\). Since \(\mu = \frac{\rho}{2\pi T^{3/2}}\exp \left\{-\frac{|v-u|^2}{2T}\right\}\), \(\ln \mu = \ln \left(\frac{\rho}{2\pi T^{3/2}}\right) - \frac{|v-u|^2}{2T}\). Therefore, from the conservations of mass, momentum and energy \(^{[3]}\), we get
\[
\int \int \frac{(F(t) - \mu)^2}{2F} \leq \mathcal{H}(F_0) - \mathcal{H}(\mu) + C_{\rho,u,T}\{|M_0| + |J_0| + |E_0|\}.
\]
The key is to estimate \(\frac{(F(t) - \mu)^2}{2F}\) in the case of \(|F(t) - \mu| \geq \delta\mu\) for a small parameter \(\delta\). Notice that either \(F(t) \leq 1 - \delta\mu\) or \(F(t) - \mu \geq \delta\mu\) in this case. If \(F(t) \leq 1 - \delta\mu\),
\[
\frac{|F(t) - \mu|}{F(t)} \geq |F(t) - \mu| \geq 1 - F(t) \geq 1 - (1 - \delta) = \delta.
\]
On the other hand, if \(F(t) \geq 1 + \delta\mu\),
\[
\frac{|F(t) - \mu|}{F(t)} \geq |F(t) - \mu| \geq 1 - \frac{\mu}{F(t)} \geq 1 - \frac{1}{1 + \delta} = \frac{\delta}{1 + \delta}.
\]
In summary, we have
\[
\mathcal{H}(F_0) - \mathcal{H}(\mu) + C\{|M_0| + |J_0| + |E_0|\} \tag{14}
\]
\[
\int \int \frac{(F(t) - \mu)^2}{2F} \mathbf{1}_{|F(t) - \mu| \leq \delta\mu} + \int \int \frac{(F(t) - \mu)^2}{2F} \mathbf{1}_{|F(t) - \mu| \geq \delta\mu}
\]
\[
\geq \int \int \frac{(F(t) - \mu)^2}{2(1 + \delta)\mu} \mathbf{1}_{|F(t) - \mu| \leq \delta\mu} + \frac{1}{2} \frac{\delta}{1 + \delta} \int |F(t) - \mu| \mathbf{1}_{|F(t) - \mu| \geq \delta\mu}.
\]
Since \(k_N(v', v'')\) is bounded, we first integrate over \(v'\) (bounded) to get
\[
C_N \int_{|v'| \leq 2N} |h(s_1, x_1 - (s - s_1)v', v'')| \mathbf{1}_{|F(s_1, x_1 - (s - s_1)v', v'') - \mu| \leq \delta\mu} dv'
\]
\[
+ C_N \int_{|v'| \leq 2N} |h(s_1, x_1 - (s - s_1)v', v'')| \mathbf{1}_{|F(s_1, x_1 - (s - s_1)v', v'') - \mu| \geq \delta\mu} dv'
\]
\[
\leq C_N \delta + C_N \left\{ \int_{|v'| \leq 2N} \mathbf{1}_{|F(s_1, x_1 - (s - s_1)v', v'')| \leq \delta\mu} dv' \right\}
\]
\[
\leq C_N \delta + C_N \left\{ \frac{(s - s_1)^d + 1}{\kappa^d \varepsilon^d} \int \int_{|y - x_1| \leq (s - s_1)\delta\mu} |h(s_1, y, v'')| \mathbf{1}_{|F(s_1, y, v'') - \mu| \geq \delta\mu} dy \right\}
\]
Here we have made a change of variable \(y = x_1 - (s - s_1)v''\), and for \(s_1 \geq \varepsilon\kappa\), \(\frac{dy}{dv''} \geq \frac{1}{\varepsilon\kappa^{d-1}}\). In the case of \(\Omega = \mathbb{R}^d\), the factor \(\{(s_1 - s)^d + 1\}\) is not needed. By further
integrating over \(v'' \) (bounded), we then control the last term in (13) by (14):

\[
\frac{C_{N,\varepsilon}}{\kappa^2} \int_0^t \int_0^s \frac{e^{-\frac{1}{\kappa^2} |v'(s-x)|}}{e^{-\frac{1}{\kappa^2} |v''(s-x)|}} \\
x(\delta + \left\{ \frac{(s-s_1)^d + 1}{\kappa d} \right\} \int_{|v''| \leq 3\kappa} \int_{\Omega} \|F - \mu\| ds ds \\
\leq \frac{C_{N,\varepsilon}}{\kappa^2} \int_0^t \int_0^s \frac{e^{-\frac{1}{\kappa^2} |v'(s-x)|}}{e^{-\frac{1}{\kappa^2} |v''(s-x)|}} \left\{ (s-s_1)^d + 1 \right\} ds ds \\
\times \left[\delta + \frac{1}{\kappa^d \delta} (|\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0|) \right] \\
\leq C_{N,\varepsilon} \left[\delta + \frac{1}{\kappa^d \delta} (|\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0|) \right] \\
\leq \frac{C_{N,\varepsilon}}{\kappa^{d/2}} \sqrt{|\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0|}.
\]

We have optimized \(\delta \) such that (for sufficiently small \(|\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0|), \)

\[
\delta = \frac{1}{\kappa^d \delta} \left\{ |\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0| \right\}.
\]

In summary, we have established, for any \(\varepsilon > 0 \) and large \(N > 0, \)

\[
\sup_{0 \leq s \leq t} \|h(s)\|_\infty \leq \{ \varepsilon + \frac{C_{N,\varepsilon}}{N} \} \sup_{0 \leq s \leq t} \|h(s)\|_\infty + C_0 \|\|h(s)\|_\infty\|_\infty^2 \\
+ \frac{C_{N,\varepsilon}}{\kappa^{d/2}} \sqrt{|\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0|}.
\]

First choosing \(\varepsilon \) small, then \(N \) sufficiently large so that \(\{ \varepsilon + \frac{C_{N,\varepsilon}}{N} \} < \frac{1}{2} \),

\[
\sup_{0 \leq s \leq t} \|h(s)\|_\infty \leq C \left\{ \|h(0)\|_\infty + \frac{1}{\kappa^{d/2}} \sqrt{|\mathcal{H}(F_0) - \mathcal{H}(\mu)| + |M_0| + |\epsilon_0|} \right\},
\]

and we conclude our proof provided the right-hand side is sufficiently small. \(\square \)

REFERENCES
