Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



High order multi-scale wall-laws, Part I: The periodic case

Authors: Didier Bresch and Vuk Milisic
Journal: Quart. Appl. Math. 68 (2010), 229-253
MSC (2000): Primary 76D05, 35B27, 76Mxx, 65Mxx
DOI: https://doi.org/10.1090/S0033-569X-10-01135-0
Published electronically: March 10, 2010
MathSciNet review: 2663000
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we present new wall-laws boundary conditions including microscopic oscillations. We consider a Newtonian flow in domains with periodic rough boundaries that we simplify considering a Laplace operator with periodic inflow and outflow boundary conditions. Following the previous approaches, see [A. Mikelić, W. Jäger, J. Diff. Eqs, 170, 96-122, (2001)] and [Y. Achdou et al, J. Comput. Phys., 147, 1, 187-218, (1998)], we construct high order boundary layer approximations and rigorously justify their rates of convergence with respect to $ \epsilon$ (the roughness' thickness). We establish mathematically a poor convergence rate for averaged second order wall-laws as it was illustrated numerically for instance in [Y. Achdou, et al]. In comparison, we establish exponential error estimates in the case of an explicit multi-scale ansatz. This motivates our study to derive implicit first order multi-scale wall-laws and to show that their rate of convergence is at least of order $ \epsilon^{\frac{3}{2}}$. We provide a numerical assessment of the claims as well as a counterexample that makes evident the impossibility of an averaged second order wall-law. Our paper may be seen as the first one to derive efficient high order wall-laws boundary conditions.

References [Enhancements On Off] (What's this?)

  • 1. Y. Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries., J. Comput. Phys. 147 (1998), no. 1, 187-218 (English). MR 1657773 (99j:76086)
  • 2. Y. Amirat, G. A. Chechkin, and R. R. Gadylshin, Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 102-115. MR 2239730 (2007d:35009)
  • 3. Y. Amirat and J. Simon, Influence of rugosity in laminar hydrodynamics, C.R. Acad. Sci. Paris 323 (1996), no. I, 313-318. MR 1404780 (97f:76025)
  • 4. I. Babuška, Solution of interface problems by homogenization. parts I and II, SIAM J. Math. Anal. 7 (1976), no. 5, 603-645. MR 0509273 (58:23013a)
  • 5. A. Basson and D. Gérard-Varet, Wall laws for fluid flows at a boundary with random roughness, preprint.
  • 6. M. Bourlard, A. Maghnouji, S. Nicaise, and L. Paquet, Asymptotic expansion of the solution of a mixed Dirichlet-Ventcel problem with a small parameter, Asymptot. Anal. 28 (2001), no. 3-4, 241-278. MR 1878796 (2002k:35068)
  • 7. D. Bresch and V. Milisic, Towards implicit multi-scale wall-laws, C. R. Math. Acad. Sciences Paris 346 (2008), 833-838. MR 2441916
  • 8. V. Busuioc and D. Iftimie, A non-Newtonian fluid with Navier boundary conditions, J. Dynamics and Diff. Eqs. 18 (2006), no. 4, 1130-1141 (English). MR 2229981 (2007c:35134)
  • 9. Th. Clopeau, A. Mikelić, and R. Robert, On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity 11 (1998), no. 12, 179-200 (English). MR 1660366 (99g:35102)
  • 10. S. Colin, P. Lalond, and C. Caen, Validation of a second order slip flow model in rectangular microchannels, Heat Transfer Engineering 25 (2004), no. 3, 23-30 (English).
  • 11. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Series, vol. 159, Springer-Verlag, New York, 2004. MR 2050138 (2005d:65002)
  • 12. V. Girault, Approximations variationnelles des e.d.p., Lecture notes, Master Degree, 2005-2006.
  • 13. Antoine Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale Model. Simul. 5 (2006), no. 3, 996-1043 (electronic). MR 2272308
  • 14. D. Gómez, M. Lobo, S. A. Nazarov, and E. Pérez, Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl. (9) 85 (2006), no. 4, 598-632. MR 2216309
  • 15. F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka, Freefem++ (version 2.24-3), Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 2008, http://www. freefem.org/ff++/ftp/freefem++doc.pdf.
  • 16. D. Iftimie and G. Planas, Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions., Nonlinearity 19 (2006), no. 3, 899-918 (English). MR 2214949 (2007c:35130)
  • 17. D. Iftimie, G. Raugel, and G. Sell, Navier-Stokes equations in thin $ 3$D domains with Navier boundary condition, Indiana Univ. Math. J. 156 (2007), 1083-1156. MR 2333468
  • 18. D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, In preparation.
  • 19. W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman., SIAM J. Appl. Math. 60 (2000), no. 4, 1111-1127 (English). MR 1760028 (2001e:76122)
  • 20. -, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations 170 (2001), 96-122. MR 1813101 (2002b:76049)
  • 21. -, Couette flows over a rough boundary and drag reduction., Commun. Math. Phys. 232 (2003), no. 3, 429-455 (English). MR 1952473 (2003j:76025)
  • 22. W. Jäger, A. Mikelić, and N. Neuss, Asymptotic analysis of the laminar viscous flow over a porous bed., SIAM J. Sci. Comput. 22 (2000), no. 6, 2006-2028 (English). MR 1856299 (2002f:76065)
  • 23. K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 15, 531-534. MR 792383 (86e:35037)
  • 24. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Die Grundlehren der mathematischen Wissenschaften, vol. I, Springer-Verlag, 1972 (English).
  • 25. M.C. Lopes Filho, H.J. Nussenzveig Lopez, and G. Planas, On the inviscid limits for two-dimensional incompressible flow with Navier friction condition, Siam J. Math. Anal. 36 (2006), no. 4, 1130-1141 (English). MR 2139203 (2005k:76026)
  • 26. A.L. Madureira and F. Valentin, Asymptotics of the Poisson problem in domains with curved rough boundaries, SIAM J. Math. Anal. 38 (2006/07), 1450-1473. MR 2286014 (2007j:35031)
  • 27. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris, 1967. MR 0227584 (37:3168)
  • 28. N. Neuss, M. Neuss-Radu, and A. Mikelić, Effective laws for the Poisson equation on domains with curved oscillating boundaries., Applicable Analysis 85 (2006), 479-502. MR 2213071 (2006k:35012)
  • 29. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations., Numerical Mathematics and Scientific Computation, Oxford Science Publication, Oxford, 1999 (English). MR 1857663 (2002i:65002)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 76D05, 35B27, 76Mxx, 65Mxx

Retrieve articles in all journals with MSC (2000): 76D05, 35B27, 76Mxx, 65Mxx

Additional Information

Didier Bresch
Affiliation: LAMA, UMR 5127 CNRS, Université de Savoie, 73217 Le Bourget du Lac cedex, France
Email: didier.bresch@univ-savoie.fr

Vuk Milisic
Affiliation: LJK-IMAG, UMR 5523 CNRS, 51 rue des Mathématiques, B.P.53, 38041 Grenoble cedex 9, France
Email: vuk.milisic@imag.fr

DOI: https://doi.org/10.1090/S0033-569X-10-01135-0
Keywords: Wall-laws, rough boundary, Laplace equation, multi-scale modelling, boundary layers, finite element methods, error estimates.
Received by editor(s): February 20, 2008
Published electronically: March 10, 2010
Additional Notes: The first author was partially supported by the project “Études mathématiques de paramétrisations en océanographie” that is part of the “ACI jeunes chercheurs 2004” framework of the French Research Ministry and by a Rhône Alpes project “Equations de type Saint-Venant avec viscosité pour des problèmes environnementaux”.
The second author was partially supported by a contract with Cardiatis$^{®}$, a company providing metallic multi-layer stents for cerebral and aortic aneurysms. This research has been partly funded by the Rhône-Alpes Institute of Complex Systems IXXI, http://www.ixxi.fr. The authors would like to thank E. Bonnetier for fruitful discussions and helpful proofreading.
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society