Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
  Quarterly of Applied Mathematics
Quarterly of Applied Mathematics
  
Online ISSN 1552-4485; Print ISSN 0033-569X
 

Left-invariant parabolic evolutions on $ SE(2)$ and contour enhancement via invertible orientation scores Part II: Nonlinear left-invariant diffusions on invertible orientation scores


Authors: Remco Duits and Erik Franken
Journal: Quart. Appl. Math. 68 (2010), 293-331
MSC (2000): Primary 58J65, 49Q20, 22E30; Secondary 34B30, 37L05, 47D06
Published electronically: February 18, 2010
MathSciNet review: 2663002
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By means of a special type of wavelet unitary transform we construct an orientation score from a grey-value image. This orientation score is a complex-valued function on the 2D Euclidean motion group $ SE(2)$ and gives us explicit information on the presence of local orientations in an image. As the transform between image and orientation score is unitary we can relate operators on images to operators on orientation scores in a robust manner. Here we consider nonlinear adaptive diffusion equations on these invertible orientation scores. These nonlinear diffusion equations lead to clear improvements of the celebrated standard ``coherence enhancing diffusion'' equations on images as they can enhance images with crossing contours. Here we employ differential geometry on $ SE(2)$ to align the diffusion with optimized local coordinate systems attached to an orientation score, allowing us to include local features such as adaptive curvature in our diffusions.


References [Enhancements On Off] (What's this?)

  • 1. M. A. Akivis and B. A. Rosenfeld, Élie Cartan (1869–1951), Translations of Mathematical Monographs, vol. 123, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by V. V. Goldberg. MR 1222194 (94f:01029)
  • 2. V. Arsigny, X. Pennec and N. Ayache.
    Bi-invariant Means in Lie Groups. Application to Left-invariant Polyaffine Transformations.
    Technical report, no. 5885, INRIA, France, April 2006.
  • 3. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache, Geometric means in a novel vector space structure on symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl. 29 (2006/07), no. 1, 328–347 (electronic). MR 2288028 (2008a:47030), http://dx.doi.org/10.1137/050637996
  • 4. Thierry Aubin, A course in differential geometry, Graduate Studies in Mathematics, vol. 27, American Mathematical Society, Providence, RI, 2001. MR 1799532 (2001m:53001)
  • 5. J. August and S.W. Zucker.
    The curve indicator random field and Markov processes.
    IEEE-PAMI, Pattern Recognition and Machine Intelligence, 25, 2003.
    Number 4.
  • 6. Robert Bryant and Phillip Griffiths, Reduction for constrained variational problems and ∫1\𝑜𝑣𝑒𝑟2𝑘²𝑑𝑠, Amer. J. Math. 108 (1986), no. 3, 525–570. MR 844630 (88a:58044), http://dx.doi.org/10.2307/2374654
  • 7. Robert Bryant, Phillip Griffiths, and Daniel Grossman, Exterior differential systems and Euler-Lagrange partial differential equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2003. MR 1985469 (2004g:58001)
  • 8. Gregory S. Chirikjian and Alexander B. Kyatkin, Engineering applications of noncommutative harmonic analysis, CRC Press, Boca Raton, FL, 2001. With emphasis on rotation and motion groups. MR 1885369 (2003g:42001)
  • 9. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space, J. Math. Imaging Vision 24 (2006), no. 3, 307–326. MR 2235475 (2007b:92016), http://dx.doi.org/10.1007/s10851-005-3630-2
  • 10. G.-H. Cottet and L. Germain, Image processing through reaction combined with nonlinear diffusion, Math. Comp. 61 (1993), no. 204, 659–673. MR 1195422 (94a:65066), http://dx.doi.org/10.1090/S0025-5718-1993-1195422-2
  • 11. R. Duits.
    Perceptual Organization in Image Analysis.
    Ph.D. thesis, Eindhoven University of Technology, Department of Biomedical Engineering, The Netherlands, 2005.
    A digital version is available on the web URL: http:// www.bmi2.bmt.tue.nl/Image-Analysis/People/RDuits/THESISRDUITS.pdf.
  • 12. R. Duits, M. Felsberg, G. Granlund, and B.M. ter Haar Romeny.
    Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group.
    International Journal of Computer Vision.
    Volume 72, issue 1, p.79-102, April 2007.
  • 13. R. Duits, M. Duits, M. van Almsick and B.M. ter Haar Romeny.
    Invertible Orientation Scores as an Application of Generalized Wavelet Theory.
    Image Processing, Analysis, Recognition, and Understanding.
    Volume 17, No. 1: pp. 42-75, 2007.
  • 14. R. Duits, M. van Almsick, M. Duits, E. Franken, and L.M.J. Florack.
    Image processing via shift-twist invariant operations on orientation bundle functions.
    In Niemann Zhuralev et al. Geppener, Gurevich, editor, 7th International Conference on Pattern Recognition and Image Analysis: New Information Technologies, pages 193-196, St. Petersburg, October 2004.
  • 15. Remco Duits and Markus van Almsick, The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D Euclidean motion group, Quart. Appl. Math. 66 (2008), no. 1, 27–67. MR 2396651 (2010c:37177), http://dx.doi.org/10.1090/S0033-569X-07-01066-0
  • 16. R. Duits and E.M. Franken.
    Left-invariant Stochastic Evolution Equations on $ SE(2)$ and its Applications to Contour Enhancement and Contour Completion via Invertible Orientation Scores.
    arXiv: 0711.0951v4 ,
    see http://arxiv.org/abs/0711.0951.
    Also available as CASA report no. 35, 2007, Eindhoven University of Technology,
    http://www.win.tue.nl/casa/research/casareports/2007.html
  • 17. R. Duits and E.M. Franken.
    Left-invariant Parabolic Evolutions on $ SE(2)$ and Contour Enhancement via Invertible Orientation Scores, Part I: Linear Left-invariant Diffusion Equations on SE(2).
    Quarterly of Applied Mathematics, this volume.
  • 18. E. Franken, R. Duits and B.M. ter Haar Romeny.
    Nonlinear Diffusion on the Euclidean Motion Group.
    Proc. of the first international conference on Scale Space and Variational Methods in Computer Vision, 461-472, 2007.
  • 19. E.M. Franken, R. Duits and B.M. ter Haar Romeny.
    Curvature estimation for Enhancement of Crossing Curves.
    Digital Proc. of the 8th IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis, held in conjuction with the IEEE Int. Conf. on Computer Vision (Rio de Janeiro). Omnipress, October 2007. Awarded the MMBIA 2007 best paper award.
  • 20. E.M. Franken and R. Duits.
    Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores.
    Accepted, to appear in International Journal of Computer Vision, 2009.
  • 21. Bernard Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2, 95–153. MR 0461589 (57 #1574)
  • 22. Waldemar Hebisch, Estimates on the semigroups generated by left invariant operators on Lie groups, J. Reine Angew. Math. 423 (1992), 1–45. MR 1142482 (93d:22008), http://dx.doi.org/10.1515/crll.1992.423.1
  • 23. Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 0222474 (36 #5526)
  • 24. Jürgen Jost, Riemannian geometry and geometric analysis, 4th ed., Universitext, Springer-Verlag, Berlin, 2005. MR 2165400 (2006c:53002)
  • 25. S. N. Kalitzin, B. M. ter Haar Romeny, and M. A. Viergever.
    Invertible apertured orientation filters in image analysis.
    Int. Journal of Computer Vision, 31(2/3):145-158, April 1999.
  • 26. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-Lond on, 1963. MR 0152974 (27 #2945)
  • 27. George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 537–545. MR 0031489 (11,158b)
  • 28. Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 0402819 (53 #6633)
  • 29. David Mumford, Elastica and computer vision, Algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, 1994, pp. 491–506. MR 1272050 (95a:92026)
  • 30. M. Nitzberg and T. Shiota.
    Nonlinear image filtering with edge and corner enhancement.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:826-833, 1992.
  • 31. P. Perona and J. Malik.
    Scale-space and edge detection using anisotropic diffusion.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, (7).
  • 32. H. G. J. Pijls, The Yang-Mills equations, theories (Amsterdam, 1981/1982) CWI Syllabi, vol. 2, Math. Centrum Centrum Wisk. Inform., Amsterdam, 1984, pp. 119–182. MR 802640
  • 33. N.A. Sochen.
    Stochastic Processes in Vision I: From Langevin to Beltrami.
    Center for Communication and Information Technologies, Department of Electrical Engineering, Technion, Israël Institute of Technology, Haifa 32000, Israël, June 1999, Tech. rep. CC PUB #285.
  • 34. M. Spivak.
    Differential geometry,
    Vol. II, Publish or Perish Inc., 1975.
  • 35. S. Sternberg.
    Lectures on Differential Geometry.
    Prentice Hall Math. Series, Prentice Hall Inc., 1964.
  • 36. M. Unser.
    A perfect fit for signal and image processing.
    IEEE signal processing magazine, pages 27-37, November 1999.
  • 37. M. van Ginkel.
    Image Analysis using Orientation Space based on Steerable Filters,
    Ph.D. thesis, Delft University of Technology, Department of Biomedical Engineering, Eindhoven the Netherlands, October 2002.
  • 38. Joachim Weickert, Anisotropic diffusion in image processing, European Consortium for Mathematics in Industry, B. G. Teubner, Stuttgart, 1998. MR 1666943 (2000a:94003)
  • 39. J. A. Weickert.
    Coherence-enhancing diffusion filtering.
    International Journal of Computer Vision, 31(2/3):111-127, April 1999.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 58J65, 49Q20, 22E30, 34B30, 37L05, 47D06

Retrieve articles in all journals with MSC (2000): 58J65, 49Q20, 22E30, 34B30, 37L05, 47D06


Additional Information

Remco Duits
Affiliation: Department of Mathematics/Computer Science and Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600MB Eindhoven, The Netherlands
Email: R.Duits@tue.nl

Erik Franken
Affiliation: Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600MB Eindhoven, The Netherlands
Email: E.M.Franken@tue.nl

DOI: http://dx.doi.org/10.1090/S0033-569X-10-01173-3
PII: S 0033-569X(10)01173-3
Keywords: Nonlinear diffusion equations on Lie groups, Cartan connection, fiber bundles, image analysis, coherence enhancing diffusion
Received by editor(s): March 14, 2008
Published electronically: February 18, 2010
Additional Notes: The Netherlands Organization for Scientific Research is gratefully acknowledged for financial support.
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.



Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2015 Brown University
Comments: qam-query@ams.org
AMS Website