Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

$ L^{q}$-approach of weak solutions to stationary rotating Oseen equations in exterior domains


Authors: S. Kracmar, S. Necasová and P. Penel
Journal: Quart. Appl. Math. 68 (2010), 421-437
MSC (2000): Primary 76D05; Secondary 35Q30, 35Q35
DOI: https://doi.org/10.1090/S0033-569X-10-01210-4
Published electronically: May 6, 2010
MathSciNet review: 2676969
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the existence and uniqueness of a weak solution of the three-dimensional nonhomogeneous stationary Oseen flow around a rotating body in an exterior domain $ D$. We mainly use the localization procedure (see Kozono and Sohr (1991)) to combine our previous results (see Kračmar, Nečasová , and Penel (2007, 2008)) with classical results in an appropriate bounded domain. We study the case of a nonintegrable right-hand side, where $ f$ is given in $ (\widehat{W}^{-1,q}(D))^3$ for certain values of $ q$.


References [Enhancements On Off] (What's this?)

  • 1. Bogovskii, M. E. Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Soviet Math. Dokl., 20 (1979), 1094-1098. MR 553920 (82b:35135)
  • 2. Bogovskii, M. E. Solution of some vector analysis problems connected with operators div and grad, in Russian, Trudy Seminar S. L. Sobolev, No. 1, 80, Akademia Nauk SSR, Sibirskoe Otdelenie Matematiki, Novosibirsk, 1980, 5-40. MR 631691 (82m:26014)
  • 3. Farwig, R., Sohr, H. Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 48, 4, 1994, 607-643. MR 1291109 (96a:35129)
  • 4. Farwig, R., Sohr, H. An approach to resolvent estimates for the Stokes system in $ L^q$ spaces, Lecture Notes in Math., 1530, 1992, 97-110. MR 1226510 (94d:35128)
  • 5. Farwig, R. The stationary Navier-Stokes equations in a 3D - exterior domain. Recent Topics on Mathematical Theory of Viscous Incompressible Fluid, Lecture Notes in Num. Appl. Anal. 16, 1998, 53-115. MR 1616402 (2000e:35176)
  • 6. Farwig, R., Krbec, M., Nečasová , Š. A weighted $ L^{q}$ approach to Oseen flow around a rotating body, Math. Methods and Applied Sciences 31 (2008), 551-574. MR 2394126 (2009b:76032)
  • 7. Farwig, R., Krbec, M., Nečasová , Š. A weighted $ L^{q}$ approach to Stokes flow around a rotating body, Annali di Ferrara 54 (2008), 61-84. MR 2403374 (2009k:35231)
  • 8. Farwig, R. An $ L^{q}$-analysis of viscous fluid flow past a rotating obstacle, Tôhoku Math. J. 920, 58 (2006), no. 1, 129-147. MR 2221796 (2007f:35226)
  • 9. Farwig, R. Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle, Regularity and other aspects of the Navier-Stokes equations, 73-84, Banach Center Warsaw, 70, Polish Acad. Sci., Warsaw, 2005. MR 2206819 (2006j:35181)
  • 10. Farwig, R., Hishida, T., Mü ller, D. $ L^{q}$-theory of a singular ``winding'' integral operator arising from fluid dynamics, Pacific J. Math. 215 (2004), 297-312. MR 2068783 (2005f:35078)
  • 11. Farwig, R., Hishida, T. Stationary Navier-Stokes flow around a rotating obstacle, Funkcial. Ekvac. 50 (2007), 371-403. MR 2381323 (2009c:35341)
  • 12. Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations: Linearised steady problems, Springer Tracts in Natural Philosophy, Vol. 38, 2nd edition, Springer 1998.
  • 13. Galdi, G. P. On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, Volume 1, Ed. by Friedlander, D. Serre, Elsevier 2002. MR 1942470 (2003j:76024)
  • 14. Galdi, G. P. Steady flow of a Navier-Stokes fluid around a rotating obstacle, Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III, vol. II, J. Elasticity 71, 1-3 (2003), 1-31. MR 2042672 (2005c:76030)
  • 15. Galdi, G. P., Silvestre A. L. On the steady motion of a Navier-Stokes liquid around a rigid body, Archive for Rational Mechanics and Analysis, 184, 3, June (2006), 371-400. MR 2299756 (2008k:35354)
  • 16. Galdi, G. P., Silvestre, A. L. Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake. Kyoto Conference on the Navier-Stokes Equations and their Applications, 127-143, RIMS Kôkyuroku Bessatsu, B1, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007. MR 2312919 (2008c:35245)
  • 17. Geissert, M., Heck, H., Hieber, M. $ L^{p}$ theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math. 596 (2006), 45-62. MR 2254804 (2007d:35208)
  • 18. Geissert, M., Heck, H., Hieber, M. On the equation $ \mbox {div } =0 $ and Bogovskii's operator in Sobolev spaces of negative order. Partial differential equations and functional analysis, 113-121, Oper. Theory Adv. Appl., 168, Birkhauser, Basel, 2006. MR 2240056 (2007k:35034)
  • 19. Kozono H., Sohr H. New a priori estimates for the Stokes equations in exterior domains. Indiana Univ. Math. J., Vol. 41, 1991, 1-27. MR 1101219 (91m:35189)
  • 20. Kračmar, S., Nečasová , Š., and Penel, P. Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations. IASME Transactions 2 (2005), 854-861. MR 2215244 (2006k:35232)
  • 21. Kračmar, S., Nečasová , Š., and Penel, P. $ L^{q}$ approach of weak solutions of Oseen Flow around a rotating body, parabolic and Navier-Stokes equations, Banach Centrum Publications, 81 (2008), 259-276.
  • 22. Kračmar, S., Nečasová , Š., and Penel, P. Anisotropic $ L^2$ estimates of weak solutions to the stationary Oseen type equations in $ R^{3}$ for a rotating body, RIMS Kokyuroku Bessatsu, B1 (2007), 219-235.
  • 23. Kračmar, S., Nečasová , Š., and Penel, P. Remarks on the non-homogeneous Oseen problem arising from modeling of the fluid around a rotating body. Hyperbolic Problems: Theory, Numerics, Applications, Proceedings of the Eleventh International Conference on Hyperbolic Problems held in Ecole Normale Supérieure, Lyon, July 17-21 (2006), Editors: S. Benzoni- Gavage, D. Serre, Springer, 776-782 (2008).
  • 24. Hishida, T. An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150 (1999), 307-348. MR 1741259 (2001b:76024)
  • 25. Hishida, T. The Stokes operator with rotating effect in exterior domains, Analysis 19 (1999), 51-67. MR 1690643 (2000c:35185)
  • 26. Hishida, T. $ L^{q}$ estimates of weak solutions to the stationary Stokes equations around a rotating body, J. Math. Soc. Japan, 58, 3 (2006), 743-767. MR 2254409 (2007e:35226)
  • 27. Hishida, T., Shibata, Y. Decay estimates of the Stokes flow around a rotating obstacle, RIMS Kokyuroku Bessatsu, B1 (2007), 167-186. MR 2312922 (2008e:35153)
  • 28. Nečasová , Š. On the problem of the Stokes flow and Oseen flow in $ \mathbb{R}^{3}$ with Coriolis force arising from fluid dynamics. IASME Transaction 2 (2005), 1262-1270. MR 2214017 (2007c:76020)
  • 29. Nečasová , Š. Asymptotic properties of the steady fall of a body in viscous fluids. Math. Meth. Appl. Sci. 27 (2004), 1969-1995. MR 2099812 (2005i:76035)
  • 30. Nečasová , Š., Schumacher, K. Strong Solutions to the Stokes Equations of a Flow Around a Rotating Body in Weighted $ L^q$-Spaces, Submitted.
  • 31. Stein, E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, N. J. (1993). MR 1232192 (95c:42002)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 76D05, 35Q30, 35Q35

Retrieve articles in all journals with MSC (2000): 76D05, 35Q30, 35Q35


Additional Information

S. Kracmar
Affiliation: Department of Technical Mathematics, FS ČVUT, Czech Technical University, Karlovo n am. 13, 12135 Prague 2, Czech Republic
Email: Stanislav.Kracmar@fs.cvut.cz

S. Necasová
Affiliation: Mathematical Institute of Academy of Sciences, Žitn a 25, 11567 Prague 1, Czech Republic
Email: matus@math.cas.cz

P. Penel
Affiliation: University of Sud, Toulon–Var, Department of Mathematics and Laboratory S.N.C., B.P. 20132, 83957 La Garde Cedex, France
Email: penel@univ-tln.fr

DOI: https://doi.org/10.1090/S0033-569X-10-01210-4
Keywords: Rotating body, stationary Oseen flow, weak solution, $L^q$ approach, exterior domain
Received by editor(s): February 8, 2008
Published electronically: May 6, 2010
Article copyright: © Copyright 2010 Brown University

American Mathematical Society