Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the artificial compressibility method for the Navier-Stokes-Fourier system


Author: Donatella Donatelli
Journal: Quart. Appl. Math. 68 (2010), 469-485
MSC (2000): Primary 35Q30; Secondary 35B35, 35Q35, 76D03, 76D05
DOI: https://doi.org/10.1090/S0033-569X-2010-01163-6
Published electronically: May 21, 2010
MathSciNet review: 2676972
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the artificial compressibility approximation method adapted to the incompressible Navier Stokes Fourier system. Two different types of approximations will be analyzed: one for the full Navier Stokes Fourier system (or the so-called Rayleigh-Benard equations) where viscous heating effects are considered and the other for when the dissipative function $ \mathbb{S}:\nabla u$ is omitted. The convergence of the approximating sequences is achieved by exploiting the dispersive properties of the wave equation structure of the pressure of the approximating system.


References [Enhancements On Off] (What's this?)

  • 1. D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with $ L^{1}$ data: existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 6, 1137-1152. MR 1489429 (98i:35096)
  • 2. A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745-762. MR 0242392 (39:3723)
  • 3. A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comp. 23 (1969), 341-353. MR 0242393 (39:3724)
  • 4. B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1986, 2271-2279. MR 1702718 (2000h:76144)
  • 5. B. Desjardins, E. Grenier, P.-L. Lions, and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. (9) 78 (1999), no. 5, 461-471. MR 1697038 (2000j:35220)
  • 6. R. J. DiPerna and P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys. 120 (1988), no. 1, 1-23. MR 972541 (90b:35203)
  • 7. D. Donatelli and P. Marcati, A dispersive approach to the artificial compressibility approximations of the Navier-Stokes equations in 3D, J. Hyperbolic Differ. Equ. 3 (2006), no. 3, 575-588. MR 2238743 (2007e:35217)
  • 8. D. Donatelli and K. Trivisa, On the motion of a viscous compressible radiative-reacting gas, Comm. Math. Phys. 265 (2006), no. 2, 463-491. MR 2231679 (2007b:35263)
  • 9. D. Donatelli and K. Trivisa, A multidimensional model for the combustion of compressible fluids, Arch. Rational Mech. Anal. 185 (2007), no. 3, 379-408. MR 2322816 (2008f:35302)
  • 10. E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004. MR 2040667 (2005i:76092)
  • 11. D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 211-274. MR 1755116 (2001g:35145)
  • 12. J.-M. Ghidaglia and R. Temam, Long time behavior for partly dissipative equations: the slightly compressible $ 2$D-Navier-Stokes equations, Asymptotic Anal. 1 (1988), no. 1, 23-49. MR 932805 (89f:35168)
  • 13. J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50-68. MR 1351643 (97a:46047)
  • 14. J. L. Guermond, P. Minev, and Jie Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6011-6045. MR 2250931 (2007g:76157)
  • 15. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. MR 1646048 (2000d:35018)
  • 16. S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. MR 1231427 (94h:35137)
  • 17. B. G. Kuznecov and Š. Smagulov, Approximation of the Navier-Stokes equations, Čisl. Metody Meh. Splošn. Sredy 6 (1975), no. 2, 70-79. MR 0609710 (58:29435)
  • 18. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace (French), Acta Math. 63 (1934), no. 1, 193-248 MR 1555394
  • 19. J.-L. Lions, Sur l'existence de solutions des équations de Navier-Stokes, C. R. Acad. Sci. Paris 248 (1959), 2847-2849. MR 0104930 (21:3680)
  • 20. P.-L. Lions, Mathematical topics in fluid dynamics. Volume 1: incompressible models. Clarendon Press, Oxford, 1996. MR 1422251 (98b:76001)
  • 21. R. H. Nochetto and J.-H. Pyo, Error estimates for semi-discrete gauge methods for the Navier-Stokes equations, Math. Comp. 74 (2005), no. 250, 521-542 (electronic). MR 2114636 (2005i:65132)
  • 22. A. P. Oskolkov, A certain quasilinear parabolic system with small parameter that approximates a system of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 21 (1971), 79-103. MR 0298262 (45:7314)
  • 23. A. Prohl, Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1997. MR 1472237 (98k:65058)
  • 24. R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, The Navier-Stokes equations II--theory and numerical methods (Oberwolfach, 1991), Lecture Notes in Math., 1530. Springer, Berlin, 1992, pp. 167-183. MR 1226515 (95a:65149)
  • 25. J. Simon, Compact sets in the space $ L\sp p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65-96. MR 916688 (89c:46055)
  • 26. Š. Smagulov, Parabolic approximation of Navier-Stokes equations, Chisl. Metody Mekh. Sploshn. Sredy 10 (1979), no. 1 Gaz. Dinamika, 137-149. MR 558110 (81c:76017)
  • 27. C. D. Sogge, Lectures on nonlinear wave equations, Monographs in Analysis, II. International Press, Boston, MA, 1995. MR 1715192 (2000g:35153)
  • 28. E. M. Stein, with the assistance of Timothy S. Murphy, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • 29. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. MR 0512086 (58:23577)
  • 30. R. Témam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I, Arch. Rational Mech. Anal. 32 (1969), 135-153. MR 0237973 (38:6250)
  • 31. R. Témam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II, Arch. Rational Mech. Anal. 33 (1969), 377-385. MR 0244654 (39:5968)
  • 32. R. Temam, Navier-Stokes equations, Theory and numerical analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001.
  • 33. N. N. Yanenko, B. G. Kuznetsov, and Sh. Smagulov, On the approximation of the Navier-Stokes equations for an incompressible fluid by evolutionary-type equations, Numerical methods in fluid dynamics. ``Mir'', Moscow, 1984, pp. 290-314. MR 804995 (87a:65156)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35Q30, 35B35, 35Q35, 76D03, 76D05

Retrieve articles in all journals with MSC (2000): 35Q30, 35B35, 35Q35, 76D03, 76D05


Additional Information

Donatella Donatelli
Affiliation: Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila, Via Vetoio, 67010 Coppito (AQ), Italy
Email: donatell@univaq.it

DOI: https://doi.org/10.1090/S0033-569X-2010-01163-6
Received by editor(s): November 19, 2008
Published electronically: May 21, 2010
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society