Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Mixed type equations in gas dynamics


Author: Shuxing Chen
Journal: Quart. Appl. Math. 68 (2010), 487-511
MSC (2000): Primary 35L65; Secondary 35L67
DOI: https://doi.org/10.1090/S0033-569X-2010-01164-9
Published electronically: May 21, 2010
MathSciNet review: 2676973
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper is mainly concerned with mixed type partial differential equations and their connections with transonic flow. Some typical problems in gas dynamics related to the mixed type equations are presented and analyzed. In the meantime, the crucial points on the study of these problems, including some recent developments and new approaches, are introduced.


References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727; II, 17 (1964), 35-92. MR 0125307 (23:A2610)
  • 2. G. Ben-Dor, Shock Waves Reflection Phenomena. Springer-Verlag. New York, 1992. MR 2399868
  • 3. G. Ben-Dor, A state-of-the-knowledge review on pseudo-steady shock-wave reflection and their transition criteria, Shock Waves, 15 (2006), 277-294.
  • 4. L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, John Wiley and Sons, Inc., New York, 1958. MR 0096477 (20:2960)
  • 5. A. V. Bitsadze, Differential equations of mixed type, Macmillan Co., New York (1964).
  • 6. S. Canic and B. L. Keyfitz, Riemann problems for the two-dimensional unsteady transonic small disturbance equation. SIAM J. Appl. Math. 58 (1998), 636-665. MR 1617618 (99f:35127)
  • 7. S. Canic, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Meth. Appl. Anal. 7 (2000), 313-335. MR 1869288 (2002h:76077)
  • 8. S. Canic, B. L. Keyfitz and E. H. Kim, A free boundary problem for a quasi-linear degenerate elliptic equation: Regular reflection of weak shocks, Comm. Pure Appl. Math. 65 (2002), 71-92. MR 1857880 (2003a:35206)
  • 9. S. Canic, B. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal. 37 (2006), 1947-1977. MR 2213401 (2007b:35224)
  • 10. G. Q. Chen and M. Feldman, Multidimensional Transonic Shocks and Free Boundary Problems for Nonlinear Equations of Mixed Type, Jour. Amer. Math. Soc. 16 (2003), 461-494. MR 1969202 (2004d:35182)
  • 11. G. Q. Chen and M. Feldman, Steady Transonic Shocks and Free Boundary Problems in Infinite Cylinders for the Euler Equations. Comm. Pure. Appl. Math. 57 (2004), 310-356. MR 2020107 (2004m:35282)
  • 12. G. Q. Chen and M. Feldman, Potential theory for shock reflection by a large-angle wedge. Proceedings of the National Academy of Sciences of USA. 102 (2005), 15368-15372. MR 2188921 (2006f:35214)
  • 13. G. Q. Chen and M. Feldman, Global solution of shock reflection by large-angle wedges for potential flow, to appear.
  • 14. G. Q. Chen, M. Slemrod and D. H. Wang, Vanishing viscosity method for transonic flow, Arch. Rat. Mech. Anal. 189 (2008), 159-188. MR 2403603
  • 15. S. X. Chen, Linear approximation for supersonic flow past a delta wing, Arch. Rat. Mech. Anal. 140 (1997), 319-334. MR 1489318 (98k:76083)
  • 16. S. X. Chen, Existence of local solution to supersonic flow past a three-dimensional wing, Advances in Appl. Math. 13 (1992), 273-304. MR 1176578 (93h:35156)
  • 17. S. X. Chen, Existence of stationary supersonic flows past a pointed body. Arch. Rat. Mech. Anal. 156 (2001), 141-181. MR 1814974 (2001m:76058)
  • 18. S. X. Chen, A singular multi-dimensional piston problem in compressible flow. Jour. Diff. Eqs. 189 (2003), 292-317. MR 1968323 (2004d:76084)
  • 19. S. X. Chen, Stability of Transonic Shock Fronts in Two-Dimensional Euler Systems. Trans. Amer. Math. Soc. 357 (2005), 287-308. MR 2098096 (2005h:35278)
  • 20. S. X. Chen, Stability of a Mach Configuration, Comm. Pure Appl. Math. 59 (2006), 1-35. MR 2180082 (2006i:35294)
  • 21. S. X. Chen, Mach configuration in pseudo-stationary compressible flow, Jour. Amer. Math. Soc. 21 (2008), 63-100. MR 2350051 (2008k:35373)
  • 22. S. X. Chen, Study on Mach reflection and Mach configuration, to appear.
  • 23. S. X. Chen and H. R. Yuan, Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems, Arch. Rat. Mech. Anal. 187 (2008), 523-556. MR 2372813 (2009a:76148)
  • 24. J. D. Cole and L. P. Cook, Transonic aerodynamics, North-Holland, Amsterdam, New York, Oxford, Tokyo (1986).
  • 25. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves. Interscience Publishers Inc., New York, 1948. MR 0029615 (10:637c)
  • 26. V. Elling and T. P. Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math. 61 (2008), 1347-1448. MR 2436185
  • 27. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715. MR 0194770 (33:2976)
  • 28. C. H. Gu, A method for solving the supersonic flow past a curved wedge. Fudan J. (Natural Science) 7 (1982), 11-14.
  • 29. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Second edition, Grundlehren der Mathematischen Wissenschaften, 224. Springer, Berlin-New York, 1983. MR 737190 (86c:35035)
  • 30. L. K. Hua, On Lavrentiev partial differential equation of the mixed type, Scientia Sinica, 13 (1964), 1755-1762. MR 0188641 (32:6077)
  • 31. K. Jegdic, Weak regular reflection for the nonlinear wave equation, to appear.
  • 32. M. A. Lavrentiev and A. V. Bitsadze, On problem of mixed type equations, Dokl. Akad. Nauk, SSSR, 20 (1950).
  • 33. P. D. Lax, Hyperbolic systems of conservation laws, Comm. Pure Appl. Math. 10 (1957), 537-566. MR 0093653 (20:176)
  • 34. J. Q. Li, On the two-dimensional gas expansion for compressible Euler equations. SIAM J. Appl. Math. 62 (2001), 831-852. MR 1897724 (2003b:76138)
  • 35. J. Q. Li and Y. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Rat. Mech. Anal. (DOI) 10.1007/s00205-008-0140-6.
  • 36. J. Q. Li and Y. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations, Arch. Rat. Mech. Anal. 193 (2009), 623-657. MR 2525113
  • 37. J. Q. Li, T. Zhang and Y. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys., 267 (2006), 1-12. MR 2238901 (2007d:76192)
  • 38. T. T. Li, On a free boundary problem. Chinese Ann. Math. 1 (1980), 351-358. MR 619582 (82i:35125)
  • 39. T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle. Comm. Math. Phys. 83 (1982), 243-260. MR 649161 (83f:35014)
  • 40. T. P. Liu, Transonic gas flows in a variable area duct. Arch. Rat. Mech. Anal. 80 (1982), 1-18. MR 656799 (83h:76050)
  • 41. A. Majda, One perspective on open problems in multi-dimensional conservation laws, IMA vol. Math. Appl. 29 (1991), 217-237. MR 1087085 (91m:35142)
  • 42. C. Miranda, Partial Differential Equations of Elliptic Type. Springer-Verlag, Berlin-Heiderberg-New York, 1970. MR 0284700 (44:1924)
  • 43. C. S. Morawetz, On the non-existence of continuous transonic flows past profiles I, Comm. Pure Appl. Math. 9 (1956), 45-68; II 10 (1958), 107-132; III 11 (1958), 129-144. MR 0078130 (17:1149d)
  • 44. C. S. Morawetz, The non-existence of continuous transonic flows past a profile, Comm. Pure Appl. Math. 17 (1964), 357-367. MR 0184522 (32:1994)
  • 45. C. S. Morawetz, Potential theory for regular and Mach reflection of a shock at a wedge, Comm. Pure Appl. Math. 47 (1994), 593-624. MR 1278346 (95g:76030)
  • 46. O. A. Oleinik and E. V. Radkevich, Second order equations with nonnegative characteristic form (Translated from Russian), Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New York, 1973. MR 0457908 (56:16112)
  • 47. U. G. Pirumov and G. S. Roslyakov, Gas Flow in Nozzles, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1978.
  • 48. J. M. Rassias, Mixed type equations, Teubner-Texte zur Mathematics, Band 90, Leipzig, 1986. MR 884157 (89a:35005)
  • 49. D. G. Schaeffer, Supersonic flow past a nearly straight wedge, Duke Math. J. 43 (1976), 637-670. MR 0413736 (54:1850)
  • 50. M. M. Smirnov, Equations of mixed type, Amer. Math. Soc. 1978. MR 504186 (80a:35090)
  • 51. F. Tricomi, Sulle equazioni lineari alle derivate parziali di secondo ordino, di tipo misto, Rendiconli, Alli dell' Accademia Nazionalw dei Lincei 14 (1923), 134-247.
  • 52. Z. P. Xin and H. C. Yin, Transonic Shock in a Nozzle I: Two-Dimensional Case, Comm. Pure Appl. Math. 58 (2005), 999-1050. MR 2143525 (2006c:76079)
  • 53. Y. Zheng, Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Mathematicae Applicatae Sinica, 22 (2006), 177-210. MR 2215512 (2007b:35229)
  • 54. T. Zhang and Y. Zheng, Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal. 21 (1990), 593-630. MR 1046791 (91d:35134)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L65, 35L67

Retrieve articles in all journals with MSC (2000): 35L65, 35L67


Additional Information

Shuxing Chen
Affiliation: School of Mathematical Sciences, Fudan University, Shanghai, 200433, People’s Republic of China
Email: sxchen@public8.sta.net.cn

DOI: https://doi.org/10.1090/S0033-569X-2010-01164-9
Keywords: Mixed type equation, Tricomi equation, Keldysh equation, Lavrentiev equation, transonic flow, Mach configuration
Received by editor(s): November 20, 2008
Published electronically: May 21, 2010
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society