Lowfrequency dipolar excitation of a perfect ellipsoidal conductor
Authors:
Gaële Perrusson, Panayiotis Vafeas and Dominique Lesselier
Journal:
Quart. Appl. Math. 68 (2010), 513536
MSC (2000):
Primary 78A45; Secondary 78A25
Published electronically:
May 27, 2010
MathSciNet review:
2676974
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper deals with the scattering by a perfectly conductive ellipsoid under magnetic dipolar excitation at low frequency. The source and the ellipsoid are embedded in an infinite homogeneous conducting ground. The main idea is to obtain an analytical solution of this scattering problem in order to have a fast numerical estimation of the scattered field that can be useful for real data inversion. Maxwell equations and boundary conditions, describing the problem, are firstly expanded using lowfrequency expansion of the fields up to order three. It will be shown that fields have to be found incrementally. The static one (term of order zero) satisfies the Laplace equation. The next nonzero term (term of order two) is more complicated and satisfies the Poisson equation. The orderthree term is independent of the previous ones and is described by the Laplace equation. They constitute three different scattering problems that are solved using the separated variables method in the ellipsoidal coordinate system. Solutions are written as expansions on the few analytically known scalar ellipsoidal harmonics. Details are given to explain how those solutions are achieved with an example of numerical results.
 1.
J. Björkberg, G. Kristensson, Threedimensional subterranean target identification by use of optimization techniques, PIER, vol. 15, 1997, pp. 141164.
 2.
B. Bourgeois, D. Legendre, M. Lambert, G. Hendrickson, Three Dimensional Electromagnetics, SEE, 1999, pp. 625657.
 3.
T. Yu, L. Carin, Analysis of the electromagnetic inductive response of a void in a conductingsoil background, IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, 2000, pp. 13201327.
 4.
H. Huang, I. J. Won, Detecting metal objects in magnetic environments using a broadband electromagnetic method, Geophysics, vol. 68, no. 6, 2003, pp. 18771887.
 5.
X. Chen, K. O'Neill, B. E. Barrowes, T. M. Grzegorczyk, J. A. Kong, Application of a spheroidal mode approach and differential evolution in inversion of magnetoquasistatic data for UXO discrimination, Inverse Problems, vol. 20, no. 6, 2004, pp. 527540.
 6.
T. J. Cui, W. C. Chew, D. L. Wright, D. V. Smith, Three dimensional imaging of buried objects in very lossy earth by inversion of VETEM data, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 10, 2003, pp. 21972210.
 7.
H.
Tortel, Electromagnetic imaging of a threedimensional perfectly
conducting object using a boundary integral formulation, Inverse
Problems 20 (2004), no. 2, 385–398. MR 2065429
(2005c:78029), http://dx.doi.org/10.1088/02665611/20/2/005
 8.
G. Perrusson, M. Lambert, D. Lesselier, A. Charalambopoulos, G. Dassios, Electromagnetic scattering by a triaxial homogeneous penetrable ellipsoid : lowfrequency derivation and testing of the localized nonlinear approximation, Radio Science, vol. 35, no. 2, 2000, pp. 463481.
 9.
G. L. Wang, W. C. Chew, T. J. Cui, D. L. Wright, D. V. Smith, 3D neartosurface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method, Inverse Problems, vol. 20, 2004, pp. 195216.
 10.
C. O. Ao, H. Braunisch, K. O'Neill, J. A. Kong, Quasimagnetostatic solution for a conducting and permeable spheroid with arbitrary excitation, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 4, 2002, pp. 887897.
 11.
G. Perrusson, P. Vafeas, D. Lesselier, Lowfrequency modeling of the interaction of magnetic dipoles and ellipsoidal bodies in a conductive medium, 2004 URSI International Symposium on Electromagnetic Theory, Pisa, Proceedings, pp. 10171019 (+ CDROM), May, 2004.
 12.
T. Habashy, R. Groom, B. Spies, Beyond the Born and the Rytov approximations: a nonlinear approach to electromagnetic scattering, Journal of Geophysical Research, vol. 98, 1993, pp. 17591775.
 13.
E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York, 1965.
 14.
George
Dassios and Kiriakie
Kiriaki, The rigid ellipsoid in the presence of a low frequency
elastic wave, Quart. Appl. Math. 43 (1986),
no. 4, 435–456. MR 846156
(87f:73021)
 15.
Panayiotis
Vafeas and George
Dassios, Stokes flow in ellipsoidal geometry, J. Math. Phys.
47 (2006), no. 9, 093102, 38. MR 2263654
(2007j:76051), http://dx.doi.org/10.1063/1.2345474
 16.
P. Vafeas, G. Perrusson, D. Lesselier, Lowfrequency solution for a perfectly conducting sphere in a conductive medium with dipolar excitation, PIER, vol. 49, 2004, pp. 87111.
 17.
P.
Moon and D.
E. Spencer, Field theory handbook, 2nd ed., SpringerVerlag,
Berlin, 1988. Including coordinate systems, differential equations and
their solutions. MR 947546
(89i:00026)
 1.
 J. Björkberg, G. Kristensson, Threedimensional subterranean target identification by use of optimization techniques, PIER, vol. 15, 1997, pp. 141164.
 2.
 B. Bourgeois, D. Legendre, M. Lambert, G. Hendrickson, Three Dimensional Electromagnetics, SEE, 1999, pp. 625657.
 3.
 T. Yu, L. Carin, Analysis of the electromagnetic inductive response of a void in a conductingsoil background, IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, 2000, pp. 13201327.
 4.
 H. Huang, I. J. Won, Detecting metal objects in magnetic environments using a broadband electromagnetic method, Geophysics, vol. 68, no. 6, 2003, pp. 18771887.
 5.
 X. Chen, K. O'Neill, B. E. Barrowes, T. M. Grzegorczyk, J. A. Kong, Application of a spheroidal mode approach and differential evolution in inversion of magnetoquasistatic data for UXO discrimination, Inverse Problems, vol. 20, no. 6, 2004, pp. 527540.
 6.
 T. J. Cui, W. C. Chew, D. L. Wright, D. V. Smith, Three dimensional imaging of buried objects in very lossy earth by inversion of VETEM data, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 10, 2003, pp. 21972210.
 7.
 H. Tortel, Electromagnetic imaging of a threedimensional perfectly conducting object using a boundary integral formulation, Inverse Problems, vol. 20, 2004, pp. 385398. MR 2065429 (2005c:78029)
 8.
 G. Perrusson, M. Lambert, D. Lesselier, A. Charalambopoulos, G. Dassios, Electromagnetic scattering by a triaxial homogeneous penetrable ellipsoid : lowfrequency derivation and testing of the localized nonlinear approximation, Radio Science, vol. 35, no. 2, 2000, pp. 463481.
 9.
 G. L. Wang, W. C. Chew, T. J. Cui, D. L. Wright, D. V. Smith, 3D neartosurface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method, Inverse Problems, vol. 20, 2004, pp. 195216.
 10.
 C. O. Ao, H. Braunisch, K. O'Neill, J. A. Kong, Quasimagnetostatic solution for a conducting and permeable spheroid with arbitrary excitation, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 4, 2002, pp. 887897.
 11.
 G. Perrusson, P. Vafeas, D. Lesselier, Lowfrequency modeling of the interaction of magnetic dipoles and ellipsoidal bodies in a conductive medium, 2004 URSI International Symposium on Electromagnetic Theory, Pisa, Proceedings, pp. 10171019 (+ CDROM), May, 2004.
 12.
 T. Habashy, R. Groom, B. Spies, Beyond the Born and the Rytov approximations: a nonlinear approach to electromagnetic scattering, Journal of Geophysical Research, vol. 98, 1993, pp. 17591775.
 13.
 E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York, 1965.
 14.
 G. Dassios, K. Kiriaki, The rigid ellipsoid in the presence of a low frequency elastic wave, Quarterly of Applied Mathematics, vol. XLIII, no. 4, 1986, pp. 435456. MR 846156 (87f:73021)
 15.
 P. Vafeas, G. Dassios, Stokes flow in ellipsoidal geometry, Journal of Mathematical Physics, vol. 47, 2006, 093102. MR 2263654 (2007j:76051)
 16.
 P. Vafeas, G. Perrusson, D. Lesselier, Lowfrequency solution for a perfectly conducting sphere in a conductive medium with dipolar excitation, PIER, vol. 49, 2004, pp. 87111.
 17.
 P. Moon, D. E. Spencer, Field Theory Handbook, SpringerVerlag, Berlin, 1961. MR 947546 (89i:00026)
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2000):
78A45,
78A25
Retrieve articles in all journals
with MSC (2000):
78A45,
78A25
Additional Information
Gaële Perrusson
Affiliation:
Département de Recherche en Electromagnétisme  Laboratoire des Signaux et Systèmes, (Univ. ParisSud, CNRS, SUPELEC) UMR8506, 3 rue JoliotCurie, GifsurYvette, F91192, France
Email:
perrusson@lss.supelec.fr
Panayiotis Vafeas
Affiliation:
Division of Applied Mathematics and Mechanics  Department of Engineering Sciences, School of Engineering  University of Patras, Patras 265 04, Greece
Email:
vafeas@des.upatras.gr
Dominique Lesselier
Affiliation:
Département de Recherche en Electromagnétisme  Laboratoire des Signaux et Systèmes, (CNRS, Univ. ParisSud, SUPELEC) UMR8506, 3 rue JoliotCurie, GifsurYvette, F91192, France
Email:
lesselier@lss.supelec.fr
DOI:
http://dx.doi.org/10.1090/S0033569X2010011715
PII:
S 0033569X(2010)011715
Keywords:
Lowfrequency expansion,
ellipsoidal harmonics,
dipole excitation
Received by editor(s):
November 20, 2008
Published electronically:
May 27, 2010
Article copyright:
© Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.
