Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Two-dimensional reaction-diffusion equations with memory

Authors: Monica Conti, Stefania Gatti, Maurizio Grasselli and Vittorino Pata
Journal: Quart. Appl. Math. 68 (2010), 607-643
MSC (2000): Primary 45K05; Secondary 35B40, 35B41, 76A10, 92D25
DOI: https://doi.org/10.1090/S0033-569X-2010-01167-7
Published electronically: September 17, 2010
MathSciNet review: 2761507
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a two-dimensional space domain, we consider a reaction-diffusion equation whose diffusion term is a time convolution of the Laplace operator against a nonincreasing summable memory kernel $ k$. This equation models several phenomena arising from many different areas. After rescaling $ k$ by a relaxation time $ \varepsilon>0$, we formulate a Cauchy-Dirichlet problem, which is rigorously translated into a similar problem for a semilinear hyperbolic integro-differential equation with nonlinear damping, for a particular choice of the initial data. Using the past history approach, we show that the hyperbolic equation generates a dynamical system which is dissipative provided that $ \varepsilon$ is small enough, namely, when the equation is sufficiently ``close'' to the standard reaction-diffusion equation formally obtained by replacing $ k$ with the Dirac mass at 0. Then, we provide an estimate of the difference between $ \varepsilon$-trajectories and 0-trajectories, and we construct a family of regular exponential attractors which is robust with respect to the singular limit $ \varepsilon\to0$. In particular, this yields the existence of a regular global attractor of finite fractal dimension. Convergence to equilibria is also examined. Finally, all the results are reinterpreted within the original framework.

References [Enhancements On Off] (What's this?)

  • 1. S. Aizicovici, M. Grasselli, M. McKibben, A hyperbolic integrodifferential system related to phase-field models, Adv. Math. Sci. Appl. 10, 601-625, 2000. MR 1807443 (2002h:45013)
  • 2. A. Babin, M.I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam, 1992. MR 1156492 (93d:58090)
  • 3. V. Belleri, V. Pata, Attractors for semilinear strongly damped wave equation on $ \mathbb{R}^3$, Discrete Contin. Dynam. Systems 7, 719-735, 2001. MR 1849655 (2003f:35026)
  • 4. T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Oxford University Press, New York, 1998. MR 1691574 (2000e:35003)
  • 5. R. Chill, E. Fašangová, Convergence to steady states of solutions of semilinear evolutionary integral equations, Calc. Var. Partial Differential Equations 22, 321-342, 2005. MR 2118902 (2005i:45013)
  • 6. M. Conti, V. Pata, M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J. 55, 169-215, 2006. MR 2207550 (2006k:35290)
  • 7. C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37, 554-569, 1970. MR 0281400 (43:7117)
  • 8. B.R. Duffy, P. Freitas, M. Grinfeld, Memory driven instability in a diffusion process, SIAM J. Math. Anal. 33, 1090-1106, 2002. MR 1897703 (2003a:76008)
  • 9. P. Fabrie, C. Galusinski, A. Miranville, S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dynam. Systems 10, 211-238, 2004. MR 2026192 (2006c:37088)
  • 10. J. Fort, V. Méndez, Wavefront in time-delayed reaction-diffusion systems. Theory and comparison to experiments, Rep. Prog. Phys. 65, 895-954, 2002.
  • 11. P. Freitas, Eigenvalue problems for the wave equation with strong damping, Proc. Roy. Soc. Edinburgh Sect. A 127A, 755-771, 1997. MR 1465418 (98g:35133)
  • 12. S. Gatti, M. Grasselli, Convergence to stationary states of solutions to the semilinear equation of viscoelasticity, in ``Differential Equations: Inverse and Direct Problems'' (A. Favini and A. Lorenzi, Eds.), pp. 131-147, Ser. Lect. Notes Pure Appl. Math. no. 251, Chapman & Hall/CRC, Boca Raton, 2006. MR 2275976 (2007g:35249)
  • 13. S. Gatti, M. Grasselli, A. Miranville, V. Pata, Memory relaxation of first order evolution equations, Nonlinearity, 18, 1859-1883, 2005. MR 2150358 (2006e:35209)
  • 14. S. Gatti, M. Grasselli, A. Miranville, V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc. 134, 117-127, 2006. MR 2170551 (2006e:37143)
  • 15. S. Gatti, V. Pata, A one-dimensional wave equation with nonlinear damping, Glasg. Math. J. 48, 419-430, 2006. MR 2271373 (2007k:35331)
  • 16. G. Gentili and C. Giorgi, Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math. 51, 342-362, 1993. MR 1218373 (94j:80004)
  • 17. C. Giorgi, A. Marzocchi, V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differential Equations Appl. 5, 333-354, 1998. MR 1638908 (99h:35081)
  • 18. C. Giorgi, V. Pata, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory, NoDEA Nonlinear Differential Equations Appl. 8, 157-171, 2001. MR 1834457 (2002d:35210)
  • 19. M. Grasselli, V. Pata, Upper semicontinuous attractor for a hyperbolic phase-field model with memory, Indiana University Mathematics Journal 50, 1281-1308, 2001. MR 1871356 (2002h:35031)
  • 20. M. Grasselli, V. Pata, Uniform attractors of nonautonomous systems with memory, in ``Evolution Equations, Semigroups and Functional Analysis'' (A. Lorenzi and B. Ruf, Eds.), pp. 155-178, Progr. Nonlinear Differential Equations, Appl. no.50, Birkhäuser, Boston, 2002. MR 1944162 (2003j:37135)
  • 21. M. Grasselli, V. Pata, A reaction-diffusion equation with memory, Discrete Contin. Dyn. Syst. 15, 1079-1088, 2006. MR 2224498 (2006m:35184)
  • 22. M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal. 31, 113-126, 1968. MR 1553521
  • 23. J.K. Hale, Asymptotic behaviour of dissipative systems, Amer. Math. Soc., Providence, RI, 1988. MR 941371 (89g:58059)
  • 24. J.K. Hale, G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations 73, 197-214, 1988. MR 943939 (89i:35022)
  • 25. A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991. MR 1084372 (92b:35002)
  • 26. A. Haraux, M.A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations 9, 95-124, 1999. MR 1714129 (2000h:35110)
  • 27. D.B. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, New York, 1981. MR 610244 (83j:35084)
  • 28. T. Hillen, Qualitative analysis of semilinear Cattaneo equations, Math. Models Methods Appl. Sci. 8, 507-519, 1998. MR 1624816 (99c:35121)
  • 29. T. Hillen, K.P. Hadeler, Hyperbolic systems and transport equations in mathematical biology, in ``Analysis and numerics for conservation laws'', pp. 257-279, Springer, Berlin, 2005. MR 2169931 (2006e:92024)
  • 30. N. Kopell, D. Ruelle, Bounds on complexity in reaction-diffusion systems, SIAM J. Appl. Math. 46, 68-80, 1986. MR 821442 (87d:35020)
  • 31. M. Marion, Attractors for reaction-diffusion equations: Existence and estimates of their dimensions, Appl. Analysis 25, 101-147, 1987. MR 911962 (88m:35082)
  • 32. V. Méndez, J. Fort, J. Farjas, Speed of wavefront solutions to hyperbolic reaction-diffusion systems, Phys. Rev. E 60, 5231-5243, 1999. MR 1719397 (2000h:35094)
  • 33. V. Méndez, J.E. Llebot, Hyperbolic reaction-diffusion equations for a forest fire model, Phys. Rev. E 56, 6557-6563, 1997. MR 1492398
  • 34. J.W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math. 29, 187-204, 1971. MR 0295683 (45:4749)
  • 35. W.E. Olmstead, S.H. Davis, S. Rosenblat, W.L. Kath, Bifurcation with memory, SIAM J. Appl. Math. 46, 171-188, 1986. MR 833472 (87f:35020)
  • 36. V. Pata, S. Zelik, Attractors and their regularity for 2-D wave equation with nonlinear damping, Adv. Math. Sci. Appl. 17, 225-237, 2007. MR 2337377 (2008j:37168)
  • 37. V. Pata, S. Zelik, Global and exponential attractors for 3-D wave equations with displacement dependent damping, Math. Methods Appl. Sci. 29, 1291-1306, 2006. MR 2247700 (2007h:37127)
  • 38. V. Pata, A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl. 11, 505-529, 2001. MR 1907454 (2003f:35027)
  • 39. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. MR 710486 (85g:47061)
  • 40. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer, New York, 1988. MR 953967 (89m:58056)
  • 41. S. Zheng, Nonlinear evolution equations, Chapman & Hall/CRC, Boca Raton, 2004. MR 2088362 (2006a:35001)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 45K05, 35B40, 35B41, 76A10, 92D25

Retrieve articles in all journals with MSC (2000): 45K05, 35B40, 35B41, 76A10, 92D25

Additional Information

Monica Conti
Affiliation: Dipartimento di Matematica “F.Brioschi”, Politecnico di Milano Via Bonardi 9, 20133 Milano, Italy
Email: monica.conti@polimi.it

Stefania Gatti
Affiliation: Dipartimento di Matematica, Università di Modena e Reggio Emilia via Campi 213/B, 41100 Modena, Italy
Email: stefania.gatti@unimore.it

Maurizio Grasselli
Affiliation: Dipartimento di Matematica “F.Brioschi”, Politecnico di Milano Via Bonardi 9, 20133 Milano, Italy
Email: maurizio.grasselli@polimi.it

Vittorino Pata
Affiliation: Dipartimento di Matematica “F.Brioschi”, Politecnico di Milano Via Bonardi 9, 20133 Milano, Italy
Email: vittorino.pata@polimi.it

DOI: https://doi.org/10.1090/S0033-569X-2010-01167-7
Keywords: Reaction-diffusion equations, memory effects, nonlinear damping, exponential attractors, global attractors, Lyapunov functionals, convergence to equilibria
Received by editor(s): January 13, 2009
Published electronically: September 17, 2010
Additional Notes: This work was partially supported by the Italian PRIN Research Project 2006 Problemi a frontiera libera, transizioni di fase e modelli di isteresi
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society