Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The Appell's function $ F{}_2$ for large values of its variables


Authors: Esther Garcia and José L. López
Journal: Quart. Appl. Math. 68 (2010), 701-712
MSC (2000): Primary 41A60; Secondary 33C65
DOI: https://doi.org/10.1090/S0033-569X-2010-01186-3
Published electronically: September 15, 2010
MathSciNet review: 2761511
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The second Appell's hypergeometric function $ F_2(a,b,b',c,c';x,y)$ has a Mellin convolution integral representation in the region $ \Re(x+y)<1$ and $ a>0$. We apply a recently introduced asymptotic method for Mellin convolution integrals to derive three asymptotic expansions of $ F_2(a,b,b',c,c';x,y)$ in decreasing powers of $ x$ and $ y$ with $ x/y$ bounded. For certain values of the real parameters $ a$, $ b$, $ b'$, $ c$ and $ c'$, two of these expansions involve logarithmic terms in the asymptotic variables $ x$ and $ y$. Some coefficients of these expansions are given in terms of the Gauss hypergeometric function $ {}_3F_2$ and its derivatives.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions. Dover, New York, 1970.
  • 2. R. G. Buschman, Reduction formulas for Appell functions for special values of the variables, Indian J. Pure Appl. Math. 12 vol 12 (1981), 1452-1455. MR 639096 (83k:33004)
  • 3. R. G. Buschman, Contiguous relations for Appell functions, Indian J. Math. 29 vol 2 (1987), 165-171. MR 919894 (89d:33006)
  • 4. B. C. Carlson, Appell functions and multiple averages, SIAM J. Math. Anal. 2 vol 3 (1971), 420-430. MR 0288320 (44:5518)
  • 5. B. C. Carlson, Quadratic transformations of Appell functions, SIAM J. Math. Anal. 7 vol 2 (1976), 291-304. MR 0393593 (52:14402)
  • 6. F. D. Colavecchia, G. Gasaneo and C. R. Garibotti, Hypergeometric integrals arising in atomic collisions physics, J. Math. Phys. 38 vol 12 (1997), 6603-6612. MR 1483510 (99c:33008)
  • 7. F. D. Colavecchia, G. Gasaneo and C. R. Garibotti, Numerical evaluation of Appell's $ F_1$ hypergeometric function, Comp. Phys. Comm. 138 vol 12 (2001), 29-43. MR 1845839 (2002f:33030)
  • 8. A. Erdelyi, Higher transcendental functions, Vol I, McGraw-Hill, New York, 1953.
  • 9. H. Exton, Laplace transforms of the Appell functions, J. Indian Acad. Math. 18 vol 1 (1996), 69-82. MR 1469885 (98k:33013)
  • 10. C. Ferreira and J. L. López, Asymptotic expansions of the Appell function $ F_1$, Q. Appl. Math. 62 vol 2 (2004), 235-257. MR 2054598 (2005h:41063)
  • 11. J. L. López, Asymptotic expansions of Mellin convolution integrals, SIAM Rev. 50 vol 2 (2008), 275-293. MR 2403051
  • 12. M. L. Manocha, Integral expressions for Appell's functions $ F_1$ and $ F_2$, Riv. Mat. Univ. Parma 2 vol 8 (1967), 235-242. MR 0248354 (40:1606)
  • 13. K. C. Mittal, Integral representations of Appell functions, Kyungpook Math. J. 17 vol 1 (1977), 101-107. MR 0457819 (56:16023)
  • 14. A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, Vol. 1, Gordon and Breach Science Pub., 1990. MR 1054647 (91c:33001)
  • 15. B. L. Sharma, Some formulae for Appell functions, Proc. Camb. Phil. Soc. 67 (1970), 613-618. MR 0259181 (41:3823)
  • 16. V. F. Tarasov, The generalizations of Slater's and Marvin's integrals and their representations by means of Appell's functions $ F_2(x,y)$, Mod. Phys. Lett. B, 8 vol 23 (1994), 1417-1426. MR 1301969 (96g:81291)
  • 17. P. R. Vein, Nonlinear ordinary and partial differential equations associated with Appell functions, J. Differential Equations, 11 (1972), 221-244. MR 0294726 (45:3794)
  • 18. R. Wong, Asymptotic Approximations of Integrals, Academic Press, New York, 1989. MR 1016818 (90j:41061)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 41A60, 33C65

Retrieve articles in all journals with MSC (2000): 41A60, 33C65


Additional Information

Esther Garcia
Affiliation: Departamento de Matemáticas, IES Tubalcaín, 50500-Tarazona, Zaragoza, Spain
Email: estlabec@yahoo.es

José L. López
Affiliation: Departamento de Matemática e Informática, Universidad Pública de Navarra, 31006-Pamplona, Spain
Email: jl.lopez@unavarra.es

DOI: https://doi.org/10.1090/S0033-569X-2010-01186-3
Keywords: Second Appell hypergeometric function, asymptotic expansions, Mellin convolution integrals.
Received by editor(s): February 25, 2009
Published electronically: September 15, 2010
Additional Notes: The first author was supported by the “Gobierno de Navarra”, ref. 2301/2008.
The second author was supported by the “Dirección General de Ciencia y Tecnología", REF. MTM2007-63772, and the “Gobierno de Navarra", ref. 2301/2008.
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society