Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Piezo-viscous flows over an inclined surface

Authors: G. Saccomandi and L. Vergori
Journal: Quart. Appl. Math. 68 (2010), 747-763
MSC (2000): Primary 76A20; Secondary 76A02
DOI: https://doi.org/10.1090/S0033-569X-2010-01202-2
Published electronically: October 15, 2010
MathSciNet review: 2761242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Stokes was the first to recognize that the viscosity of many fluids varies significantly with pressure. Later, several experimental studies showed that such a variation may be exponential. Here, by using the lubrication theory as revised by Rajagopal and Szeri, we study the flow of a piezo-viscous fluid down an incline in various flow regimes.

References [Enhancements On Off] (What's this?)

  • 1. C. Ancey, Plasticity and geophysical flows: A review, J. Non-Newtonian Fluid Mech. 142 (2007), 4-35.
  • 2. E.C. Andrade, Viscosity of liquids, Nature, 125 (1930), 309-310.
  • 3. S. Bair, P. Kottke, Pressure-viscosity relationship for elastohydrodynamics, Tribology Trans., 46 (2003), 289-295.
  • 4. C. Barus, Isotherms, isopiestics and isometrics relative to viscosity, Amer. J. Sci. 45 (1893), 87-96.
  • 5. M.P. Brenner, Instability mechanism at driven contact lines, Phys. Rev. E, Vol. 47, No. 6 (1993), 4597-4599.
  • 6. J. Hron, J. Malek, K. R. Rajagopal: Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. London A, 457 (2001) 1-20.
  • 7. H.M. Laun, Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts, Rheol. Acta, $ \mathbf{42}$, 295-308 (2003).
  • 8. J. Málek, J. Necas, K.R. Rajagopal: Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities, Arch. Rational Mech. Anal. 165 (2002), 243-269. MR 1941479 (2004h:76003)
  • 9. J. Málek, J. Necas, K.R. Rajagopal: Global Existence of Solutions for Flows of Fluids with Pressure and Shear Dependent Viscosities. Applied Mathematics Letters 15 (2002) 961-967. MR 1925921 (2003g:76032)
  • 10. M.J. Martín-Alfonso, F.J. Martínez-Boza, F.J. Navarro, M. Fernández, C. Gallegos, Pressure-temperature-viscosity relationship for heavy petroleum fractions, Fuel, 86 (2007), 227-233.
  • 11. J. Murali Krishnan, K.R. Rajagopal, Review of the uses and modeling of bitumen from ancient to modern times, Appl. Mech. Rev., 56 (2003), 149-214.
  • 12. A. Oron, S.H. Davis, S.G. Bankoff, Long-scale evolution of thin liquid films, Reviews of Modern Physics, Vol. 69, No. 3 (1997), 931-980.
  • 13. C.A. Perazzo, J. Gratton, Thin film of non-Newtonian fluid on an incline, Phys. Rev. E 67, 016307 (2003), 1-6.
  • 14. S.C. Prasad, K.R. Rajagopal, Flow of a fluid with pressure dependent viscosity due to a boundary that is being stretched, Applied Mathematics and Computation 173 (2006), 50-68. MR 2203373 (2006h:76007)
  • 15. K.R. Rajagopal, On implicit constitutive theories for fluids, J. Fluid Mech. 550 (2006), 243-249. MR 2263984 (2007e:76004)
  • 16. K.R. Rajagopal, A semi-inverse problem of flows of fluids with pressure-dependent viscosities, Inverse Probl. Sci. Eng. 16 No. 3 (2008), 269-280. MR 2427495 (2009h:76062)
  • 17. K.R. Rajagopal, G. Saccomandi, Unsteady exact solution for flows of fluids with pressure-dependent viscosities, Mathematical Proceedings of the Royal Irish Academy 106A (2) (2006), 115-130. MR 2266820 (2008c:35255)
  • 18. K.R. Rajagopal, G. Saccomandi, L. Vergori,On the Oberbeck-Boussinesq approximation in fluids with pressure-dependent viscosities, Nonlinear Analysis: Real World Applications 10 (2009), No. 2 1139-1150. MR 2474287
  • 19. K.R. Rajagopal, G. Saccomandi, L. Vergori, Stability analysis of the Rayleigh-Bénard convection for a fluid with temperature and pressure dependent viscosity, Z. Angew. Math. Phys. 60 (2009), 739-755.MR 2520609 (2010g:76058)
  • 20. K.R. Rajagopal, A.Z. Szeri, On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication, Proc. R. Soc. A 459 (2003), 2771-2786. MR 2015989 (2004i:76069)
  • 21. R.N.J. Saal, G. Koens, Investigations into plastic properties of asphaltic bitumen, Physics, 7 (1933), 408-412.
  • 22. R.N.J. Saal, J.W.A. Labout, Rheological properties of asphalt, in: F.R. Eirich (Ed.) Rheology: Theory and Applications, Academic Press, New York, 363-400, 1958.
  • 23. G.G. Stokes, On the theories of the internal friction of fluids in motion, and motion of elastic solids, Trans. Camb. Phil. Soc. 8 (1845), 287-305.
  • 24. S.C. Subramanian, K.R. Rajagopal, A note on the flow through porous solids at high pressures, Comput. Math. Appl. 53 (2007), 260-275. doi:10.1016/j.camwa.2006.02.023. MR 2325232
  • 25. A.Z. Szeri, Fluid Film Lubrication: Theory and Design, Cambridge University Press, 1998.
  • 26. M. Vasudevaiah, K.R. Rajagopal, On fully developed flows of fluids with a pressure dependent viscosity in a pipe, Applications of Mathematics 50, No. 4 (2005), 341-353. MR 2151461 (2006b:76002)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 76A20, 76A02

Retrieve articles in all journals with MSC (2000): 76A20, 76A02

Additional Information

G. Saccomandi
Affiliation: Dipartimento di Ingegneria Industriale, Università di Perugia, Via G. Duranti, 06125 Italy
Email: saccomandi@mec.dii.unipg.it

L. Vergori
Affiliation: Dipartimento di Matematica, Università del Salento, Strada Prov. Lecce-Arnesano, 73100 Lecce, Italy
Email: luigi.vergori@unile.it

DOI: https://doi.org/10.1090/S0033-569X-2010-01202-2
Keywords: Lubrication approximation, pressure-dependent viscosity, Barus’ law.
Received by editor(s): April 1, 2009
Published electronically: October 15, 2010
Article copyright: © Copyright 2010 Brown University

American Mathematical Society