Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Hyperbolic conservation laws with large initial data. Is the Cauchy problem well-posed?


Author: Charis Tsikkou
Journal: Quart. Appl. Math. 68 (2010), 765-781
MSC (2000): Primary 35L65
DOI: https://doi.org/10.1090/S0033-569X-2010-01208-9
Published electronically: September 17, 2010
MathSciNet review: 2761243
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an example in which the Glimm estimate for a strictly hyperbolic system of two conservation laws is violated.


References [Enhancements On Off] (What's this?)

  • 1. P. Baiti and H.K. Jenssen, Blowup in $ L^{\infty}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete Contin. Dynam. Systems 7 (2001), 837-853. MR 1849664 (2003m:35155)
  • 2. S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005), 1-120. MR 2150387 (2007i:35160)
  • 3. A. Bressan, Hyperbolic System of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, 2000. MR 1816648 (2002d:35002)
  • 4. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wissenschaften Series, Second Edition, Springer Verlag, 325, 2005. MR 2169977 (2006d:35159)
  • 5. C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972), 33-41. MR 0303068 (46:2210)
  • 6. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697-715. MR 0194770 (33:2976)
  • 7. J. Glimm and P.D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs AMS, No. 101 (1970). MR 0265767 (42:676)
  • 8. H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. New York: Springer, 2002. MR 1912206 (2003e:35001)
  • 9. A. Jeffrey, Breakdown of the solution to a completely exceptional system of hyperbolic equations. J. Math. Anal. Appl. 45 (1974), 375-381. MR 0333472 (48:11797)
  • 10. H.K. Jenssen, Blowup for systems of conservation laws. SIAM J. Math. Anal. 31 (2000), 894-908. MR 1752421 (2001a:35114)
  • 11. J.-L. Joly, G. Metivier, and J. Rauch, A nonlinear instability for $ 3\times3$ systems of conservation laws. Comm. Math. Phys. 162 (1994), 47-59. MR 1272766 (95f:35145)
  • 12. S. Kruzkov, First-order quasilinear equations with several space variables. Mat. Sbornik 123 (1970), 228-255. English translation: Math. USSR Sbornik 10 (1970), 217-273. MR 0267257 (42:2159)
  • 13. T.-P. Liu, Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981), No. 240. MR 603391 (82i:35116)
  • 14. T.-P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow. Discrete Contin. Dynam. Systems 4 (1998), no. 1, 1-32. MR 1485360 (98k:76116)
  • 15. J. Smoller, Shock Waves and Reaction-diffusion Equations, Springer, New York, 1994. MR 1301779 (95g:35002)
  • 16. K. Trivisa, A priori estimates in hyperbolic systems of conservation laws via generalized characteristics. Comm. PDE 22 (1997), 235-267. MR 1434145 (98a:35086)
  • 17. K. Trivisa, BV estimates for n$ \times$n systems of conservation laws. Contemp. Math. 327 (2003), 341-358. MR 1991553 (2004i:35222)
  • 18. C. Tsikkou, BV Estimates for the P-System, preprint.
  • 19. R. Young, On elementary interactions for hyperbolic conservation laws, preprint.
  • 20. R. Young, Isentropic gas dynamics with large data. In Hyperbolic Problems: Theory, Numerics, Applications, T. Hou and E. Tadmor, eds., pp. 929-939. Springer, 2003. MR 2053240
  • 21. R. Young, Blowup of solutions and boundary instabilities in nonlinear hyperbolic equations. Comm. Math. Sci. 1 (2003), 269-292. MR 1980476 (2004j:35190)
  • 22. R. Young and W. Szeliga, Blowup with small BV data in hyperbolic conservation laws. Arch. Ration. Mech. Anal. 179, No. 1, 31-54 (2006). MR 2208288 (2007h:35228)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L65

Retrieve articles in all journals with MSC (2000): 35L65


Additional Information

Charis Tsikkou
Affiliation: Department of Mathematics, Brown University, Providence, RI 02912
Email: Charis.Tsikkou@mis.mpg.de

DOI: https://doi.org/10.1090/S0033-569X-2010-01208-9
Keywords: Nonlinear PDE, hyperbolic systems of conservation laws, Glimm-Lax estimates
Received by editor(s): July 18, 2009
Published electronically: September 17, 2010
Additional Notes: The author is indebted to her advisor, Professor Constantine M. Dafermos, for his constant help, advice, motivation and patience during her graduate student life at Brown University.
Article copyright: © Copyright 2010 Brown University

American Mathematical Society