Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Analyticity of transmission problem to thermoelastic plates


Authors: Hugo D. Fernández Sare and Jaime E. Muñoz Rivera
Journal: Quart. Appl. Math. 69 (2011), 1-13
MSC (2000): Primary 35B40, 74H40
DOI: https://doi.org/10.1090/S0033-569X-2010-01187-6
Published electronically: December 9, 2010
MathSciNet review: 2807974
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider an oscillation model to a plate comprised of two different thermoelastic materials; that is, we study a transmission problem to thermoelastic plates. Our main result is to prove that the corresponding semigroup associated to this problem is of analytic type.


References [Enhancements On Off] (What's this?)

  • 1. Kim, J. U.: On the energy decay of a linear thermoelastic bar and plate. SIAM J. Math. Anal. 23 (1992), 889-899. MR 1166563 (93f:35159)
  • 2. Lagnese, J. E.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989). MR 1061153 (91k:73001)
  • 3. Lasiecka, I., Triggiani, R.: Analyticity, and lack thereof, of thermo-elastic semigroups. ESAIM: Proceedings, Contrôle et Équations aux Dérivées Partielles. 4 (1998), 199-222. MR 1663662 (99m:35243)
  • 4. Liu, K., Liu, Z.: Exponential stability and analyticity of abstract linear thermoelastic systems. Z. Angew. Math. Phys. 48 (1997), 885-904. MR 1488686 (98m:35207)
  • 5. Liu, Z. Y., Renardy, M.: A note on the equation of a thermoelastic plate. Appl. Math. Lett. 8 (1995), 1-6. MR 1356798 (96i:35128)
  • 6. Liu, Z., Zheng, S.: Semigroups associated with dissipative systems. Research Notes Math. 398, Chapman & Hall/CRC, Boca Raton (1999). MR 1681343 (2000c:47080)
  • 7. Muñoz Rivera, J. E., Shibata, Y.: A linear thermoelastic plate equation with Dirichlet boundary conditions. Math. Meth. Appl. Sci. 20 (1997), 915-932. MR 1458525 (98d:73010)
  • 8. Muñoz Rivera, J. E., Fatori, L. H.: Regularizing properties and propagations of singularities for thermoelastic plates. Math. Meth. Appl. Sci. 21 (1998), 797-821. MR 1626986 (99f:73013)
  • 9. Muñoz Rivera, J. E., Portillo Oquendo, H.: A transmission problem for thermoelastic plates. Quarterly of Applied Mathematics. 62(2) (2004), 273-293. MR 2054600 (2005b:74035)
  • 10. Pazy, A.: Semigroup of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983. MR 710486 (85g:47061)
  • 11. Shibata, Y.: On the exponential decay of the energy of a linear thermoelastic plate. Comp. Appl. Math. 13 (1994), 81-102. MR 1361587 (96k:35178)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35B40, 74H40

Retrieve articles in all journals with MSC (2000): 35B40, 74H40


Additional Information

Hugo D. Fernández Sare
Affiliation: Department of Research and Development, National Laboratory for Scientific Computation, Rua Getulio Vargas 333, Quitandinha CEP 25651-070, Petrópolis, Rio de Janeiro-Brazil
Email: hugosare@lncc.br, hugo@im.ufrj.br

Jaime E. Muñoz Rivera
Affiliation: Department of Research and Development, National Laboratory for Scientific Computation, Rua Getulio Vargas 333, Quitandinha CEP 25651-070, Petrópolis, Rio de Janeiro-Brazil
Email: rivera@lncc.br

DOI: https://doi.org/10.1090/S0033-569X-2010-01187-6
Keywords: Thermoelastic plates, transmission problem, analytic semigroup
Received by editor(s): March 4, 2009
Published electronically: December 9, 2010
Additional Notes: H. D. Fernández Sare is supported by the CNPq grant 152398/2007-4. J. E. Muñoz Rivera is supported by the CNPq grant 309166/2007-1.
Article copyright: © Copyright 2010 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society