Numerical solution of a singular integral equation with Cauchy kernel in the plane contact problem

Authors:
M. R. Capobianco and G. Criscuolo

Journal:
Quart. Appl. Math. **69** (2011), 79-89

MSC (2010):
Primary 65R20; Secondary 41A05

DOI:
https://doi.org/10.1090/S0033-569X-2010-01231-3

Published electronically:
December 9, 2010

MathSciNet review:
2807978

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes a collocation method for solving numerically a singular integral equation with Cauchy and Volterra operators, associated with a proper constraint condition. The numerical method is based on the transformation of the given integral problem into a hypersingular integral equation and then applying a collocation method to solve the latter equation. Convergence of the resulting method is then discussed, and optimal convergence rates for the collocation and discrete collocation methods are given in suitable weighted Sobolev spaces. Numerical examples are solved using the proposed numerical technique.

**1.**D. Berthold, W. Hoppe, B. Silbermann,*A fast algorithm for solving the generalized airfoil equation*, J. Comput. Appl. Math.**43**(1992), 185-219. MR**1193301 (93k:65106)****2.**M. R. Capobianco, G. Criscuolo, P. Junghanns,*A fast algorithm for Prandtl's integro-differential equation*, J. Comput. Appl. Math.**77**(1997), 103-128. MR**1440006 (98a:65186)****3.**M. R. Capobianco, G. Criscuolo, P. Junghanns, U. Luther,*Uniform convergence of the collocation method for Prandtl's integro-differential equation*, ANZIAM J.**42**(2000), 151-168. MR**1783378 (2001i:65138)****4.**R. Chapko, R. Kress, L. Monch,*The numerical solution of a hypersingular integral equation for elastic scattering from a planar crack*, IMA J. Numer. Anal.**20**(2000), 601-619. MR**1795299 (2002c:45012)****5.**J. A. Cuminato, A. D. Fitt, S. McKee,*A review of linear and nonlinear Cauchy singular integral and integro-differential equations arising in mechanics*, J. Integral Equations Appl.**19**(2007), 163-207. MR**2355008 (2009b:45009)****6.**V. J. Ervin, E. P. Stephan,*Collocation with Chebyshev polynomials for a hypersingular integral equation on an interval*, J. Comput. Appl. Math.**43**(1992), 221-229. MR**1193302 (93j:65221)****7.**G. M. L. Gladwell,*Contact Problems in the Classical Theory of Elasticity*, Sijthof, Noordhoff, The Netherlands, 1980. MR**661763 (84m:73094)****8.**P. Junghanns,*Product integration for the generalized airfoil equation*, in Eberhard Schock, Ed., Beiträge zur angewandten Analysis und Informatik (Shaker, Aachen, 1994), 171-188. MR**1287178 (95d:45005)****9.**A. I. Kalandija,*Mathematichal Methods of Two-Dimensional Elasticty*, Mir Publishers, Moscow, 1975. MR**0400846 (53:4676)****10.**A. C. Kaya, F. Erdogan,*On the solution of integral equations with strongly singular kernels*, Quart. Appl. Math.,**45**(1987), 105-122. MR**0885173 (88e:45012)**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC (2010):
65R20,
41A05

Retrieve articles in all journals with MSC (2010): 65R20, 41A05

Additional Information

**M. R. Capobianco**

Affiliation:
Istituto per le Applicazioni del Calcolo “Mauro Picone" - CNR, Sezione di Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy

Email:
mariarosaria.capobianco@cnr.it

**G. Criscuolo**

Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Complesso Monte Sant’Angelo, Edificio T, Via Cintia, 80126 Napoli, Italy

Email:
giuliana.criscuolo@unina.it

DOI:
https://doi.org/10.1090/S0033-569X-2010-01231-3

Received by editor(s):
July 15, 2009

Published electronically:
December 9, 2010

Article copyright:
© Copyright 2010
Brown University