Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay


Author: Je-Chiang Tsai
Journal: Quart. Appl. Math. 69 (2011), 123-146
MSC (2000): Primary 34A34, 34A12, 35K57
DOI: https://doi.org/10.1090/S0033-569X-2010-01236-7
Published electronically: December 29, 2010
MathSciNet review: 2807981
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The reaction-diffusion systems which are based on an isothermal autocatalytic chemical reaction involving both an autocatalytic step of the $ (m+1)$th order ( $ A+mB\rightarrow (m+1)B$) and a decay step of the same order ( $ B\rightarrow C$) have very rich and interesting dynamics. Previous studies in the literature indicate that traveling waves play a key role in understanding these interesting dynamical phenomena. However, there is a lack of rigorous proof of the existence of traveling waves to this system. Here we generalize this isothermal autocatalytic chemical reaction model and provide a rigorous proof of the existence of traveling waves for the resulting reaction-diffusion system which also includes the systems arising from epidemiology and the microbial growth in a flow reactor.


References [Enhancements On Off] (What's this?)

  • 1. Ai, S. and Huang, W. (2005) Traveling waves for a reaction-diffusion system in population dynamics and epidemiology. Proc. Roy. Soc. Edinburgh Sect. A 135A, 663-675. MR 2173333 (2006e:35188)
  • 2. Ai, S. and Huang, W. (2007) Traveling wavefronts in combustion and chemical reaction models. Proc. Roy. Soc. Edinburgh Sect. A 137A, 671-700. MR 2345776 (2008g:35106)
  • 3. Bailey, N. T. J. (1975) The mathematical theory of infectious diseases and its applications. 2nd edition, Hafner Press. MR 0452809 (56:11084)
  • 4. Ballyk, M., Dung, L., Jones, D. A. and Smith, H. L. (1999) Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math. 59, 573-596. MR 1654407 (2001a:92027)
  • 5. Billingham, J. and Needham, D. J. (1991a) The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves. Philos. Trans. R. Soc. Ser. A 334, 1-24. MR 1155096 (92m:80020)
  • 6. Billingham, J. and Needham, D. J. (1991b) The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. II. An initial value problem with immobilised or nearly immobilised autocatalyst. Philos. Trans. R. Soc. Ser. A 336, 497-539. MR 1133118 (93a:80012)
  • 7. Carr, J. (1981) Applications of centre manifold theory. Springer-Verlag, New York. MR 635782 (83g:34039)
  • 8. Chen, X. and Qi, Y. (2007) Sharp estimates on minimum traveling wave speed of reaction diffusion systems modelling autocatalysis. SIAM J. Math. Anal. 39, 437-448. MR 2338414 (2008h:34083)
  • 9. Fisher, R. A. (1937) The wave of advance of advantageous genes. Ann. Eugenics 7, 353-369.
  • 10. Gowland R. J. and Stedman, G. (1983) A novel moving boundary reaction involving hydroxylamine and nitric acid. J. Chem. Soc., Chem. Commun. 10, 1038-1039.
  • 11. Gray, P. (1988) Instabilities and oscillations in chemical reactions in closed and open systems. Proc. R. Soc. A 415, 1-34.
  • 12. Guo, J.-S. and Tsai, J.-C. (2009) Traveling waves of two-component reaction-diffusion systems arising from higher order autocatalytic models. Quart. Appl. Math. 67, 559-578. MR 2547640
  • 13. Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500-544.
  • 14. Hosono, Y. and Ilyas, B. (1994) Existence of traveling waves with any positive speed for a diffusive epidemic model. Nonlin. World 1, 277-290. MR 1303097 (95k:92021)
  • 15. Hosono, Y. and Ilyas, B. (1995) Travelling waves for a simple diffusive epidemic model. Math. Models Meth. Appl. Sci. 5, 935-966. MR 1359215 (96j:35248)
  • 16. Hosono, Y. (2007) Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete Contin. Dyn. Syst. Ser. B 8, 115-125. MR 2300326 (2008c:35148)
  • 17. Huang, W. (2004) Travelling waves for a biological reaction-diffusion model. J. Dynam. Diff. Eqns. 16, 745-765. MR 2109164 (2005g:35175)
  • 18. Huang, W. (2006) Uniqueness of traveling wave solutions for a biological reaction-diffusion equation. J. Math. Anal. Appl. 316, 42-59. MR 2201748 (2006k:35149)
  • 19. Källén, A. (1984) Thresholds and traveling waves in an epidemic model for rabies. Nonlinear Anal. TMA 8, 851-856. MR 753763 (86h:92042)
  • 20. Kay, A. L., Needham, D. J. and Leach, J. A. (2003) Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay: I. Permanent form travelling waves. Nonlinearity 16, 735-770. MR 1959108 (2004c:35215)
  • 21. Kennedy, C. R. and Aris, R. (1980) Travelling waves in a simple population model involving growth and death. Bull. Math. Biol. 42, 397-429. MR 661329 (84f:92041)
  • 22. Kermack, W. O. and McKendric, A. G. (1927) Contribution to the mathematical theory of epidemic. Proc. R. Soc. A 115, 700-721.
  • 23. Kolmogorov, A. N., Petrovsky, I. G. and Piskunov, N. S. (1937) Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Université d'État à Moscou, Ser. Int., Sect. A. 1, 1-25.
  • 24. Marion, M. (1985) Qualitative properties of a nonlinear system for laminar flames without ignition temperature. Nonlin. Analysis 9, 1269-1292. MR 813658 (87j:80016)
  • 25. Merkin, J. H. and Needham, D. J. (1989) Propagation reaction-diffusion waves in a simple isothermal quadratic chemical system. J. Eng. Math. 23, 343-356. MR 1029938 (90k:80024)
  • 26. Merkin, J. H. and Needham, D. J. (1990) The development of travelling waves in a simple isothermal chemical system. II. Cubic autocatalysis with quadratic and linear decay. Proc. R. Soc. A 430, 315-345. MR 1068302 (91i:80008)
  • 27. Merkin, J. H. and Needham, D. J. (1991) The development of travelling waves in a simple isothermal chemical system. IV. Quadratic autocatalysis with quadratic decay. Proc. R. Soc. A 434, 531-554.
  • 28. Merkin, J. H. and Needham, D. J. (1993) Reaction-diffusion waves in an isothermal chemical system with general orders of autocatalysis and spatial dimension. J. Appl. Math. Phys. (ZAMP) 44, 707-721. MR 1239888 (94f:35067)
  • 29. Needham, D. J. and Merkin, J. H. (1991) The development of travelling waves in a simple isothermal chemical system with general orders of autocatalysis and decay. Philos. Trans. Roy. Soc. London Ser. A 337, 261-274. MR 1143726 (93a:80013)
  • 30. Qi, Y. (2007) The development of traveling waves in cubic auto-catalysis with different rates of diffusion. Physica D. 226, 129-135. MR 2296235 (2007k:35270)
  • 31. Saul, A. and Showalter, K. (1984) Propagating reaction-diffusion fronts. In Oscillations and Traveling waves in chemical systems (ed. R. J. Field and M. Burger), Wiley, New York.
  • 32. Smith, H. L. and Zhao., X. Q. (2004) Travelling waves in a bio-reactor model. Nonlin. Analysis Real World Applic. 5, 895-909. MR 2085700 (2005g:35161)
  • 33. Voronkov, V. G. and Semenov, N. N. (1939) Zh. Fiz. Khim. 13, 1695.
  • 34. Zaikin, A. N. and Zhabotinskii, A. M. (1970) Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535-537.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 34A34, 34A12, 35K57

Retrieve articles in all journals with MSC (2000): 34A34, 34A12, 35K57


Additional Information

Je-Chiang Tsai
Affiliation: Department of Mathematics, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi 621, Taiwan
Email: tsaijc@math.ccu.edu.tw

DOI: https://doi.org/10.1090/S0033-569X-2010-01236-7
Keywords: Isothermal autocatalytic chemical reaction, traveling waves, reaction-diffusion systems, centre manifold
Received by editor(s): July 29, 2009
Published electronically: December 29, 2010
Additional Notes: The author is supported in part by the National Science Council of Taiwan
Article copyright: © Copyright 2010 Brown University

American Mathematical Society