Delta shock waves for the chromatography equations as self-similar viscosity limits

Author:
Meina Sun

Journal:
Quart. Appl. Math. **69** (2011), 425-443

MSC (2000):
Primary 35L65, 35L67, 35B30

Published electronically:
April 5, 2011

MathSciNet review:
2850739

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Riemann problem for the changed form of the chromatography system is considered here. It can be shown that the delta shock wave appears in the Riemann solution for exactly specified initial states. The generalized Rankine-Hugoniot relation of the delta shock wave is derived in detail. The existence and uniqueness of solutions involving the delta shock wave for the Riemann problem is proven by employing the self-similar viscosity vanishing approach.

**1.**Luigi Ambrosio,*Transport equation and Cauchy problem for 𝐵𝑉 vector fields*, Invent. Math.**158**(2004), no. 2, 227–260. MR**2096794**, 10.1007/s00222-004-0367-2**2.**Luigi Ambrosio, Gianluca Crippa, Alessio Figalli, and Laura V. Spinolo,*Some new well-posedness results for continuity and transport equations, and applications to the chromatography system*, SIAM J. Math. Anal.**41**(2009), no. 5, 1890–1920. MR**2564199**, 10.1137/090754686**3.**Stefano Bianchini,*Stability of 𝐿^{∞} solutions for hyperbolic systems with coinciding shocks and rarefactions*, SIAM J. Math. Anal.**33**(2001), no. 4, 959–981 (electronic). MR**1885292**, 10.1137/S0036141000377900**4.**F. Bouchut,*On zero pressure gas dynamics*, Advances in kinetic theory and computing, Ser. Adv. Math. Appl. Sci., vol. 22, World Sci. Publ., River Edge, NJ, 1994, pp. 171–190. MR**1323183****5.**Alberto Bressan and Wen Shen,*Uniqueness for discontinuous ODE and conservation laws*, Nonlinear Anal.**34**(1998), no. 5, 637–652. MR**1634652**, 10.1016/S0362-546X(97)00590-7**6.**Gui-Qiang Chen and Hailiang Liu,*Formation of 𝛿-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids*, SIAM J. Math. Anal.**34**(2003), no. 4, 925–938. MR**1969608**, 10.1137/S0036141001399350**7.**Constantine M. Dafermos,*Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method*, Arch. Rational Mech. Anal.**52**(1973), 1–9. MR**0340837****8.**C. M. Dafermos,*Admissible wave fans in nonlinear hyperbolic systems*, Arch. Rational Mech. Anal.**106**(1989), no. 3, 243–260. MR**981663**, 10.1007/BF00281215**9.**C. M. Dafermos and R. J. DiPerna,*The Riemann problem for certain classes of hyperbolic systems of conservation laws*, J. Differential Equations**20**(1976), no. 1, 90–114. MR**0404871****10.**V. G. Danilov and V. M. Shelkovich,*Delta-shock wave type solution of hyperbolic systems of conservation laws*, Quart. Appl. Math.**63**(2005), no. 3, 401–427. MR**2169026**, 10.1090/S0033-569X-05-00961-8**11.**Weinan E, Yu. G. Rykov, and Ya. G. Sinai,*Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics*, Comm. Math. Phys.**177**(1996), no. 2, 349–380. MR**1384139****12.**Grey Ercole,*Delta-shock waves as self-similar viscosity limits*, Quart. Appl. Math.**58**(2000), no. 1, 177–199. MR**1739044****13.**Brian T. Hayes and Philippe G. LeFloch,*Measure solutions to a strictly hyperbolic system of conservation laws*, Nonlinearity**9**(1996), no. 6, 1547–1563. MR**1419460**, 10.1088/0951-7715/9/6/009**14.**Jiaxin Hu,*A limiting viscosity approach to Riemann solutions containing delta-shock waves for nonstrictly hyperbolic conservation laws*, Quart. Appl. Math.**55**(1997), no. 2, 361–373. MR**1447583****15.**Feimin Huang and Zhen Wang,*Well posedness for pressureless flow*, Comm. Math. Phys.**222**(2001), no. 1, 117–146. MR**1853866**, 10.1007/s002200100506**16.**Barbara Lee Keyfitz and Herbert C. Kranzer,*Spaces of weighted measures for conservation laws with singular shock solutions*, J. Differential Equations**118**(1995), no. 2, 420–451. MR**1330835**, 10.1006/jdeq.1995.1080**17.**D.J. Korchinski, Solution of a Riemann problem for a system of conservation laws possessing no classical weak solution, Thesis, Adelphi University, 1977.**18.**Jiequan Li and Hanchun Yang,*Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics*, Quart. Appl. Math.**59**(2001), no. 2, 315–342. MR**1827367****19.**Jiequan Li, Tong Zhang, and Shuli Yang,*The two-dimensional Riemann problem in gas dynamics*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 98, Longman, Harlow, 1998. MR**1697999****20.**M.Mazzotti, Occurrence of a delta-shock in non-linear chromatography, 6th International Congress on Industrial and Applied Mathematics, Zurich, 2007.**21.**M.Mazzotti, Non-classical composition fronts in nonlinear chromatography - Delta-shock, Ind. Eng. Chem. Res. 48(2009), 7733-7752.**22.**M. Mazzotti, A. Tarafder, J. Cornel, F. Gritti, and G. Guiochon, Experimental evidence of a delta-shock in nonlinear chromatography, J. Chromatography. A, 1217(2010), 2002-2012.**23.**E. Yu. Panov and V. M. Shelkovich,*𝛿’-shock waves as a new type of solutions to systems of conservation laws*, J. Differential Equations**228**(2006), no. 1, 49–86. MR**2254184**, 10.1016/j.jde.2006.04.004**24.**V. M. Shelkovich,*Singular solutions of 𝛿- and 𝛿’-shock wave type of systems of conservation laws, and transport and concentration processes*, Uspekhi Mat. Nauk**63**(2008), no. 3(381), 73–146 (Russian, with Russian summary); English transl., Russian Math. Surveys**63**(2008), no. 3, 473–546. MR**2479998**, 10.1070/RM2008v063n03ABEH004534**25.**Wancheng Sheng and Tong Zhang,*The Riemann problem for the transportation equations in gas dynamics*, Mem. Amer. Math. Soc.**137**(1999), no. 654, viii+77. MR**1466909**, 10.1090/memo/0654**26.**Marshall Slemrod and Athanassios E. Tzavaras,*A limiting viscosity approach for the Riemann problem in isentropic gas dynamics*, Indiana Univ. Math. J.**38**(1989), no. 4, 1047–1074. MR**1029688**, 10.1512/iumj.1989.38.38048**27.**Meina Sun,*Interactions of elementary waves for the Aw-Rascle model*, SIAM J. Appl. Math.**69**(2009), no. 6, 1542–1558. MR**2487160**, 10.1137/080731402**28.**De Chun Tan, Tong Zhang, and Yu Xi Zheng,*Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws*, J. Differential Equations**112**(1994), no. 1, 1–32. MR**1287550**, 10.1006/jdeq.1994.1093**29.**Blake Temple,*Systems of conservation laws with invariant submanifolds*, Trans. Amer. Math. Soc.**280**(1983), no. 2, 781–795. MR**716850**, 10.1090/S0002-9947-1983-0716850-2**30.**Athanasios E. Tzavaras,*Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws*, Arch. Rational Mech. Anal.**135**(1996), no. 1, 1–60. MR**1414293**, 10.1007/BF02198434**31.**Hanchun Yang,*Riemann problems for a class of coupled hyperbolic systems of conservation laws*, J. Differential Equations**159**(1999), no. 2, 447–484. MR**1730728**, 10.1006/jdeq.1999.3629**32.**Ya. B. Zeldovich and A. D. Myshkis,*Elementy matematicheskoi fiziki: sreda iz nevzaimodeistvuyushchikh chastits*, Izdat. “Nauka”, Moscow, 1973 (Russian). MR**0351195**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC (2000):
35L65,
35L67,
35B30

Retrieve articles in all journals with MSC (2000): 35L65, 35L67, 35B30

Additional Information

**Meina Sun**

Affiliation:
School of Mathematics and Information, Ludong University, Yantai 264025, People’s Republic of China and Laboratory of Mathematics Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China

Email:
smnwhy0350@163.com

DOI:
http://dx.doi.org/10.1090/S0033-569X-2011-01207-3

Keywords:
Delta shock wave; Riemann problem; viscosity method; Temple class; chromatography system; hyperbolic conservation laws

Received by editor(s):
October 8, 2009

Published electronically:
April 5, 2011

Additional Notes:
This work is partially supported by the National Natural Science Foundation of China (10901077), the China Postdoctoral Science Foundation (201003504, 20090451089) and the Shandong Provincial Doctoral Foundation (BS2010SF006).

Article copyright:
© Copyright 2011
Brown University

The copyright for this article reverts to public domain 28 years after publication.