Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the Cauchy problem for the Degasperis-Procesi equation


Authors: Guilong Gui and Yue Liu
Journal: Quart. Appl. Math. 69 (2011), 445-464
MSC (2000): Primary 35L15, 35G25, 35Q58
DOI: https://doi.org/10.1090/S0033-569X-2011-01216-5
Published electronically: April 5, 2011
MathSciNet review: 2850740
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish here the local well-posedness for the Degasperis-Procesi equation in the Besov spaces. We also determine some blow-up criteria of the strong solutions and investigate the nonexistence of smooth solitary-wave solutions.


References [Enhancements On Off] (What's this?)

  • 1. R. Beals, D. H. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140 (1998), 190-206. MR 1658522 (99i:34120)
  • 2. A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation. Arch. Rat. Mech. Anal. 183 (2007), 215-239. MR 2278406 (2007j:35183)
  • 3. A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5 (2007), 1-27. MR 2288533 (2007k:35394)
  • 4. J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14 (1981), 209-246. MR 631751 (84h:35177)
  • 5. R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Letters 71 (1993), 1661-1664. MR 1234453 (94f:35121)
  • 6. R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation. Adv. Appl. Mech. 31 (1994), 1-33.
  • 7. J. Y. Chemin, Localization in Fourier space and Navier-Stokes system. Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, pages 53-136. MR 2144406 (2006d:35181)
  • 8. J.-Y. Chemin, Perfect Incompressible Fluids. Oxford Univ. Press, New York, 1998. MR 1688875 (2000a:76030)
  • 9. G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 233 (2006), 60-91. MR 2204675 (2007d:35231)
  • 10. A. Constantin, The trajectories of particles in Stokes waves. Invent. Math. 166 (2006), 523-535. MR 2257390 (2007j:35240)
  • 11. A. Constantin, Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46 (2005), 023506. MR 2121730 (2005h:35303)
  • 12. A. Constantin, On the scattering problem for the Camassa-Holm equation. Proc. Roy. Soc. London A 457 (2001), 953-970. MR 1875310 (2002k:37132)
  • 13. A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50 (2000), 321-362. MR 1775353 (2002d:37125)
  • 14. A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181 (1998), 229-243. MR 1668586 (2000b:35206)
  • 15. A. Constantin and J. Escher, Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. 44 (2007), 423-431. MR 2318158 (2008m:76019)
  • 16. A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233 (2000), 75-91. MR 1738352 (2001b:35258)
  • 17. A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation. Inverse Probl. 22 (2006), 2197-2207. MR 2277537 (2007j:37119)
  • 18. A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dynam. Res. 40 (2008), 175-211. MR 2369543 (2009b:76009)
  • 19. A. Constantin, T. Kappeler, B. Kolev, and P. Topalov, On geodesic exponential maps of the Virasoro group. Ann. Global Anal. Geom. 31 (2007), 155-180. MR 2326419 (2008d:58005)
  • 20. A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78 (2003), 787-804. MR 2016696 (2004k:37163)
  • 21. A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Rational Mech. Anal. 192 (2009), 165-186. MR 2481064
  • 22. A. Constantin and H. P. McKean, A shallow water equation on the circle. Comm. Pure Appl. Math. 52 (1999), 949-982. MR 1686969 (2000m:37146)
  • 23. A. Constantin and W. A. Strauss, Stability of peakons. Comm. Pure Appl. Math. 53 (2000), 603-610. MR 1737505 (2001b:35252)
  • 24. R. Danchin, A few remarks on the Camassa-Holm equation. Differential and Integral Equations 14 (2001), 953-988. MR 1827098 (2002e:35204)
  • 25. R. Danchin, Fourier Analysis Methods for PDEs. Lecture Notes (2005), November 14.
  • 26. R. Danchin, A note on well-posedness for Camassa-Holm equation. J. Differential Equations 192 (2003), 429-444. MR 1990847 (2004h:35197)
  • 27. H. R. Dullin, G. A. Gottwald, and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Letters 87 (2001), 4501-4504.
  • 28. A. Degasperis, D. D. Holm, and A. N. W. Hone, A new integral equation with peakon solutions. Theoretical and Mathematical Physics 133 (2002), 1463-1474. MR 2001531 (2004d:37098)
  • 29. A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory. edited by A. Degasperis and G. Gaeta, World Scientific (1999), 23-37. MR 1844104 (2002f:37112)
  • 30. J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation. arXiv:0908.0508.
  • 31. J. Escher, Y. Liu, and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal. 241 (2006), 457-485. MR 2271927 (2008e:35165)
  • 32. A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4 (1981), 47-66. MR 636470 (84j:58046)
  • 33. G. Gui, Y. Liu and L. Tian, Global existence and blow-up phenomena for the peakon b-family of equations. Indiana University Mathematics Journal 57 (2008), 1209-1234. MR 2429090 (2009h:35365)
  • 34. D. Henry, Infinite propagation speed for the Degasperis-Procesi equation. J. Math. Anal. Appl. 311 (2005), 755-759. MR 2168432 (2006d:35225)
  • 35. D. Henry, Compactly supported solutions of the Camassa-Holm equation. J. Nonl. Math. Phys. 12 (2005), 342-347. MR 2160386 (2006b:35286)
  • 36. D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of $ 1+1$ evolutionary PDEs. SIAM J. Appl. Dyn. Syst. (electronic) 2 (2003), 323-380. MR 2031278 (2004k:76046)
  • 37. R. I. Ivanov, On the integrability of a class of nonlinear dispersive wave equations. J. Nonlinear Math. Phys. 12 (2005), 462-468. MR 2171998 (2007c:35168)
  • 38. R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455 (2002), 63-82. MR 1894796 (2003b:76026)
  • 39. B. Kolev, Poisson brackets in hydrodynamics. Discrete Contin. Dyn. Syst. 19 (2007), 555-574. MR 2335765 (2008j:37142)
  • 40. B. Kolev, Lie groups and mechanics: an introduction. J. Nonlinear Math. Phys. 11 (2004), 480-498. MR 2097659 (2005f:70024)
  • 41. M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics. Tsunami and nonlinear waves, Springer, Berlin, 49 (2007), 31-49. MR 2364923 (2008m:35309)
  • 42. J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306 (2005), 72-82. MR 2132889 (2006a:35271)
  • 43. Z. Lin and Y. Liu, Stabiltiy of peakons for the Degasperis-Procesi equation. Comm. Pure Appl. Math. LXII (2009), 125-146. MR 2460268
  • 44. Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation. Comm. Math. Phys. 267 (2006), 801-820. MR 2249792 (2007f:35251)
  • 45. Y. Liu and Z. Yin, On the blow-up phenomena for the Degasperis-Procesi equation. Int. Math. Res. Not., (2007), Art. ID rnm117, 22pp. MR 2380010 (2009g:35277)
  • 46. H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation. J. Nonlinear Sci. 17 (2007), 169-198. MR 2314847 (2008f:35353)
  • 47. H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Problems 19 (2003), 1241-1245. MR 2036528 (2004m:35279)
  • 48. Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit. Inverse Problems 21 (2005), 1553-1570. MR 2173410 (2006g:35241)
  • 49. O. Mustafa, A note on the Degasperis-Procesi equation. J. Nonl. Math. Phys. 12 (2005), 10-14. MR 2122861 (2005h:35310)
  • 50. G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46 (2001), 309-327. MR 1851854 (2002i:35172)
  • 51. L. Tian, G. Gui and Y. Liu, On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm equation. Comm. Math. Phys. 257 (2005), 667-701. MR 2164948 (2006e:35240)
  • 52. J. F. Toland, Stokes waves. Topol. Methods Nonlinear Anal. 7 (1996), 1-48. MR 1422004 (97j:35130)
  • 53. H. Triebel, Theory of Function Spaces. Monographs in Mathematics. Vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540 (86j:46026)
  • 54. Z. Xin and P. Zhang, On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53 (2000), 1411-1433. MR 1773414 (2001m:35278)
  • 55. Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions. Illinois J. Math. 47 (2003), 649-666. MR 2007229 (2004g:35217)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L15, 35G25, 35Q58

Retrieve articles in all journals with MSC (2000): 35L15, 35G25, 35Q58


Additional Information

Guilong Gui
Affiliation: Department of Mathematics, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China
Address at time of publication: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Email: glgui@amss.ac.cn

Yue Liu
Affiliation: Department of Mathematics, University of Texas, Arlington, Texas 76019
Email: yliu@uta.edu

DOI: https://doi.org/10.1090/S0033-569X-2011-01216-5
Keywords: Local well-posedness, blow-up, Degasperis-Procesi equation, peakons, Besov spaces.
Received by editor(s): November 15, 2009
Published electronically: April 5, 2011
Additional Notes: The work of the first author was supported in part by the NSF of China under Grant 11001111, and Grants 10JDG141 and 10JDG157.
The work of the second author was partially supported by the NSF grant DMS-0906099 and the NHARP grant-003599-0001-2009. Both authors would like to thank the referee for constructive suggestions and comments.
Article copyright: © Copyright 2011 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society