Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Shock wave formation process for a multidimensional scalar conservation law


Authors: V. G. Danilov and D. Mitrovic
Journal: Quart. Appl. Math. 69 (2011), 613-634
MSC (2000): Primary 35L65, 35L67
DOI: https://doi.org/10.1090/S0033-569X-2011-01234-9
Published electronically: June 28, 2011
MathSciNet review: 2893992
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a global smooth approximate solution to a multidimensional scalar conservation law describing the shock wave formation process for initial data with small variation. In order to solve the problem, we modify the method of characteristics by introducing ``new characteristics'', nonintersecting curves along which the (approximate) solution to the problem under study is constant. The procedure is based on the weak asymptotic method, a technique which appeared to be rather powerful for investigating nonlinear waves interactions.


References [Enhancements On Off] (What's this?)

  • 1. I. Berre, H. K. Dahle, K. H. Karlsen, K.-A. Lie, J. R. Natvig, Time-of-Flight + Fast Marching + Transport Collapse: An Alternative to Streamlines for Two-Phase Porous Media Flow with Capillary Forces?, In Computational Methods in Water Resources (Delft, The Netherlands, 2002), 995-1002, Elsevier, 2002.
  • 2. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin-New York, 2000. MR 1763936 (2001m:35212)
  • 3. V. G. Danilov, Generalized Solution Describing Singularity Interaction, International J. of Mathematics and Mathematical Sciences 29 (2002), 481-494. MR 1896252 (2003m:35149)
  • 4. V. G. Danilov, Weak asymptotic solution of phase-field system in the case of confluence of free boundaries in the Stefan problem with underheating, European J. of Applied Mathematics 18 (2007), 537-570. MR 2360622 (2009a:35272)
  • 5. V. G. Danilov, G. A. Omelianov, Weak asymptotic method for the study of propagation and interaction of infinitely narrow $ \delta$ solitons, Electronic J. of Differential Equations, 2003 (2003), 1-27.
  • 6. V.G. Danilov, V. M. Shelkovich, Dynamics of propagation and interaction of $ \delta$-shock waves in conservation law systems, J. Differential Equations 211 (2005), 333-381. MR 2125546 (2006f:35173)
  • 7. V. G. Danilov, D. Mitrović, Weak asymptotics of shock wave formation process, Nonlinear Analysis: Theory, Methods and Applications, 61 (2005), 613-635. MR 2126617 (2006a:35193)
  • 8. V. G. Danilov, D. Mitrović, Delta shock wave formation in the case of triangular hyperbolic system of conservation laws , J. Differential Equations 245 (2008), 3704-3734. MR 2462701 (2009h:35264)
  • 9. V. G. Danilov, D. Mitrović, Smooth approximations of global in time solutions to scalar conservation laws, Abstract and Applied Analysis, 2009 (2009), 1-26. MR 2485639 (2010d:35224)
  • 10. V. G. Danilov, G. A. Omel$ '$yanov, and V. M. Shelkovich, Weak asymptotics method and interaction of nonlinear waves. In: Asymptotic Methods for Wave and Quantum Problems, M. V. Karasev, ed., AMS Transl., Ser. 2, Vol. 208, 33-164. MR 1995392 (2004f:35021)
  • 11. V. G. Danilov, V. M. Shelkovich, Delta-shock wave type solution of hyperbolic systems of conservation laws, Quart. Appl. Math. 63 (2005), 401-427. MR 2169026 (2006j:35158)
  • 12. R. Flores-Espinosa, G. A. Omel$ '$yanov, Weak asymptotics for the problem of interaction of two shock waves, Nonlinear Phenomena in Complex Systems, 8 (2005), 331-341. MR 2240498 (2007c:35108)
  • 13. R. Flores-Espinosa, G. A. Omel$ '$yanov, Asymptotic behavior for the centered-rarefaction appearance problem. Electronic J. Differential Equations, 2005 (2005), 1-25. MR 2195544 (2006j:35160)
  • 14. M. G. Garcia, G. A. Omel$ '$yanov, Kink-antikink interaction for semilinear wave equation with a small parameter, Electronic J. of Differential Equations, 2009 (2009), 1-26. MR 2495850 (2010d:35233)
  • 15. M. G. Garcia, R. Flores-Espinosa, G. A. Omel$ '$yanov, Interaction of shock waves in gas dynamics. Uniform in time asymptotics, International J. Mathematics and Mathematical Sciences, 19 (2005), 3111-3126. MR 2206088 (2006i:35235)
  • 16. J. Glimm, D. Marchesin, O. McBryan, Unstable fingers in two phase flows, Commun. Pure. Appl. Math., 34 (1981), 53-75. MR 600572 (82e:76069)
  • 17. A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problem, Nauka, Moscow, 1989, English transl., American Mathematical Society, Providence, RI, 1992. MR 1182791 (93g:35016)
  • 18. A. M. Il'in, S. V. Zakharov, From a weak discontinuity to the gradient catastrophe, Mat. Sb. 193 (2001), 3-18. MR 1867014 (2002k:35198)
  • 19. G. Kossioris, I. Shyuichi, Geometric singularities for solutions of single conservation law, Arch. Rational Mech. Anal., 139 (1997), 255-290. MR 1480242 (98j:35116)
  • 20. S. N. Kruzhkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10 (1970), 217-243.
  • 21. D. A. Kulagin, G. A. Omel$ '$yanov, Interaction of kinks for semilinear wave equations with a small parameter, Nonlinear Analysis: Theory, Methods and Applications, 65 (2006), 347-378. MR 2228433 (2007f:35197)
  • 22. A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Nauka, Moscow, 1989, English transl., American Mathematical Society, Providence, RI, 1992. MR 1182791 (93g:35016)
  • 23. A. M. Il'in, S. V. Zakharov, From a weak discontinuity to the gradient catastrophe, Mat. Sb. 193 (2001), 3-18. MR 1867014 (2002k:35198)
  • 24. D. Mitrovic, V. Bojkovic, V. Danilov, Linearization of the Riemann problem for a triangular system of conservation laws and delta shock wave formation process, Mathematical Methods in the Applied Sciences, 33 (2010), 904-921. MR 2662315 (2011d:35310)
  • 25. D. Mitrovic, J. Susic, Global in time solution to Hopf equation and application to a non-strictly hyperbolic system of conservation laws, Electronic J. of Differential Equations, 2007 (2007), 1-22. MR 2349942 (2008f:35241)
  • 26. S. Nakane, Formation of shocks for a single conservation law, SIAM Journal of Math. Anal., 19 (1988), 1391-1408. MR 965259 (89k:35142)
  • 27. E. Yu. Panov, V. M. Shelkovich, $ \delta'$-Shock waves as a new type of solutions to systems of conservation laws, J. of Differential Equations 228 (2006), 49-86. MR 2254184 (2007f:35188)
  • 28. D. Wagner, The Riemann problem in two space dimensions for a single conservation law, SIAM J. Math. Anal., 14 (1983), 534-559. MR 697528 (84f:35092)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L65, 35L67

Retrieve articles in all journals with MSC (2000): 35L65, 35L67


Additional Information

V. G. Danilov
Affiliation: Moscow Technical University of Communication and Informatics, Aviamotornaya 8a, 111024 Moscow, Russia
Email: danilov@miem.edu.ru

D. Mitrovic
Affiliation: Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro
Address at time of publication: Faculty of Mathematics, University of Bergen, Johannes Bruns gate 12, 5007 Bergen
Email: matematika@t-com.me

DOI: https://doi.org/10.1090/S0033-569X-2011-01234-9
Keywords: global approximate solution, weak asymptotic method
Received by editor(s): April 24, 2009
Published electronically: June 28, 2011
Additional Notes: The work of V. G. Danilov is supported by RFFI grant 05-01-00912, DFG Project 436 RUS 113/895/0-1.
Article copyright: © Copyright 2011 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society