Multiple scales analysis of water hammer attenuation

Authors:
S. Y. Han, D. Hansen and G. Kember

Journal:
Quart. Appl. Math. **69** (2011), 677-690

MSC (2000):
Primary 76M99; Secondary 76M45

DOI:
https://doi.org/10.1090/S0033-569X-2011-01258-9

Published electronically:
July 7, 2011

MathSciNet review:
2893995

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A multiple scales analysis is used to construct a uniformly accurate approximation to water hammer pressure wave attenuation that is initiated by a sudden valve opening. The method of analysis is well suited to the study of a water hammer that possesses several time scales and is applied to a mild generalization of the classical equations. It should prove useful for finding attenuation curves when effects such as unsteady friction and fluid-structure interaction are added. The analytical results are numerically verified using the method of characteristics.

**1.**Fathi M. Allan and Kamel Al-Khaled,*An approximation of the analytic solution of the shock wave equation*, J. Comput. Appl. Math.**192**(2006), no. 2, 301–309. MR**2228815**, https://doi.org/10.1016/j.cam.2005.05.009**2.**A. S. Tijsseling and A. E. Vardy,*Time scales and fsi in unsteady liquid-filled pipe flow*, BHR Group, Proc. of the 9th Int. Conf. on Pressure Surges (Editor S. J. Murray), 2004, pp. 135-150.**3.**-,*Time scales and fsi in oscillatory liquid-filled pipe flow*, BHR Group, Proc. of the 10th Int. Conf. on Pressure Surges (Editor S. Hunt), 2008, pp. 553-568.**4.**A. Bergant, A. S. Tijsseling, J. P. Vitkovsky, D. I. C. Covas, A. R. Simpson, and M. F. Lambert,*Parameters affecting water-hammer wave attenuation, shape, and timing part i: Mathematical tools*, IAHR J. of Hydraulic Research**46(3)**(2008), 373-381.**5.**-,*Parameters affecting water-hammer wave attenuation, shape, and timing part ii: Case studies*, IAHR J. of Hydraulic Research**46(3)**(2008), 382-391.**6.**G. C. F. M. R. de Prony Baron,*Recherches physico-mathematiques sur la theorie du mouvement des eaux courantes*(1804).**7.**M. S. Ghidaoui and A. A. Kolyshkin,*Stability analysis of velocity profiles in water hammer flows*, ASCE J. of Hydraulic Engineering**127(6)**(2001), 499-511.**8.**G. O. Brown,*The history of the Darcy-Weisbach equation for pipe flow resistance*, Proceedings of the 150th Anniversary Conference of ASCE (Editors J. Rogers and A. Fredrich), 2002, pp. 34-43.**9.**D. Hansen, V. K. Garga, and D. R. Townsend,*Selection and application of a 1-d non-Darcy flow equation for 2-d flow through rockfill embankments*, Can. Geotechnical J.**32(2)**(1995), 223-232.**10.**D. J. Leslie and A. S. Tijsseling,*Travelling discontinuities in waterhammer theory: attenuation due to friction*, BHR Group, Proc. of the 8th Int. Conf. on Pressure Surges (Editor A. Anderson), 2000, pp. 323-335.**11.**A. S. Leon, M. S. Ghidaoui, A. R. Schmidt, and M. H. Garcia,*Efficient second-order-accurate shock-capturing scheme for modelling one and two-phase water hammer flows*, ASCE J. of Hydraulic Engineering**134(7)**(2008), 970-983.**12.**L. F. Moody,*Friction factors for pipe flow*, Transactions of American Society of Mechanical Engineers**66(8)**(1944), 671-678.**13.**A. M. A. Sattar, A. R. Dickerson, and M. H. Chaudhry,*Wavelet-Galerkin solution to the water hammer equations*, ASCE J. of Hydraulic Engineering**134(4)**(2009), 283-295.**14.**A. S. Tijsseling,*Fluid-structure interaction in liquid-filled pipe systems*, J. of Fluids and Structures**10**(1996), 109-146.**15.**W. Driedger,*Controlling centrifugal pumps*, Hydrocarbon Processing**74(7)**(1995), 43-49.**16.**X. Q. Wang, J. G. Sun, and W. T. Sha,*Transient flows and pressure waves in pipes*, Journal of Hydrodynamics**7(2)**(1995), 51-59.**17.**D. H. Wilkinson and E. M. Curtis,*Water hammer in a thin-walled pipe*, Proc. rd Int. Conf. on Pressure Surges, 1980, pp. 221-240.**18.**E. B. Wylie and V. L. Streeter,*Fluid transients in systems*, Prentice-Hall, Englewood Cliffs, NJ, 1993.

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC (2000):
76M99,
76M45

Retrieve articles in all journals with MSC (2000): 76M99, 76M45

Additional Information

**S. Y. Han**

Affiliation:
Worley-Parsons Canada, 400-10201 Southport Rd. SW, Calgary, Alberta, Canada, T2W 4X9

Email:
Sang-Yoon.Han@WorleyParsons.com

**D. Hansen**

Affiliation:
Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, NS, Canada, B3J 1Z1

Email:
David.Hansen@dal.ca

**G. Kember**

Affiliation:
Department of Engineering Mathematics, Dalhousie University, 1340 Barrington St., Halifax, NS, Canada, B3J 1Y9

Email:
Guy.Kember@dal.ca

DOI:
https://doi.org/10.1090/S0033-569X-2011-01258-9

Received by editor(s):
March 2, 2010

Published electronically:
July 7, 2011

Article copyright:
© Copyright 2011
Brown University

The copyright for this article reverts to public domain 28 years after publication.