Abstract: This paper examines the effect of damping on a nonstrictly hyperbolic system. It is shown that the growth of singularities is not restricted as in the strictly hyperbolic case where dissipation can be strong enough to preserve the smoothness of small solutions globally in time. Here, irrespective of the stabilizing properties of damping, solutions are found to break down in finite time on a line where two eigenvalues coincide in state space.
1.Jack
Carr, Applications of centre manifold theory, Applied
Mathematical Sciences, vol. 35, Springer-Verlag, New York-Berlin,
1981. MR
635782 (83g:34039)
2.
C. M. Dafermos, Contemporary issues in the dynamic behaviour of continuous media, LCDS Lecture Notes, Brown University, vol. 85-1, 1985.
4.Barbara
L. Keyfitz and Herbert
C. Kranzer, Nonstrictly hyperbolic systems of conservation laws:
formation of singularities, Nonlinear partial differential equations
(Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc.,
Providence, R.I., 1983, pp. 77–90. MR 706089
(84h:35102)
6.R.
J. Knops, H.
A. Levine, and L.
E. Payne, Non-existence, instability, and growth theorems for
solutions of a class of abstract nonlinear equations with applications to
nonlinear elastodynamics, Arch. Rational Mech. Anal.
55 (1974), 52–72. MR 0364839
(51 #1093)
7.Howard
A. Levine, Some additional remarks on the nonexistence of global
solutions to nonlinear wave equations, SIAM J. Math. Anal.
5 (1974), 138–146. MR 0399682
(53 #3525)
9.Takaaki
Nishida, Nonlinear hyperbolic equations and related topics in fluid
dynamics, Département de Mathématique, Université
de Paris-Sud, Orsay, 1978. Publications Mathématiques d’Orsay,
No. 78-02. MR
0481578 (58 #1690)
10.
T. Ruggeri, A. Muracchini, and L. Seccia, Shock waves and second sound in a rigid heat conductor: A critical temperature for NaF and Bi, Phys. Rev. Lett., 64 (1990), pp. 2640-2643.
11.
K. Saxton and R. Saxton, Nonlinearity and memory effects in low temperature heat propagation, Arch. Mech., 52 (2000), pp. 127-142.
13.Ralph
Saxton, Blow-up at the boundary of solutions to nonlinear evolution
equations, Evolution equations (Baton Rouge, LA, 1992) Lecture Notes
in Pure and Appl. Math., vol. 168, Dekker, New York, 1995,
pp. 383–392. MR 1300444
(95i:35025)
14.M.
Slemrod, Global existence, uniqueness, and asymptotic stability of
classical smooth solutions in one-dimensional nonlinear
thermoelasticity, Arch. Rational Mech. Anal. 76
(1981), no. 2, 97–133. MR 629700
(83c:73056), 10.1007/BF00251248
15.
Y. Wang, Finite time blow-up results for the damped wave equations with arbitrary energy in an inhomogeneous medium, Arxiv preprint math/0702190v1 (2007).
J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag New York, Inc., 1983. MR 709768 (85f:58002)
B. L. Keyfitz and H. C. Kranzer, Non-strictly hyperbolic systems of conservation laws: formation of singularities, Contemporary Math., 17 (1983), pp. 77-90. MR 706089 (84h:35102)
B. L. Keyfitz and C. A. Mora, Prototypes for nonstrict hyperbolicity in conservation laws, Contemp. Math., Amer. Math. Soc., 255 (2000), pp. 125-137. MR 1752505 (2001d:35132)
R. J. Knops, H. A. Levine and L. E. Payne, Nonexistence, instability and growth theorems for solutions to an abstract nonlinear equation with applications to elastodynamics, Arch. Rational Mech. Anal., 55 (1974), pp. 52-72. MR 0364839 (51:1093)
H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), pp. 138-146. MR 0399682 (53:3525)
H. Li and K. Saxton, Asymptotic behavior of solutions to quasilinear hyperbolic equations with nonlinear damping, Quart. Appl. Math., 61 (2003), pp. 295-313. MR 1976371 (2004f:35112)
T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publications Mathématiques d'Orsay, 78.02 (1978), Dépt. de Mathématique, Paris-Sud. MR 0481578 (58:1690)
T. Ruggeri, A. Muracchini, and L. Seccia, Shock waves and second sound in a rigid heat conductor: A critical temperature for NaF and Bi, Phys. Rev. Lett., 64 (1990), pp. 2640-2643.
K. Saxton and R. Saxton, Phase transitions and aspects of heat propagation in low temperature solids, Proceedings from the International Conference on Differential Equations Hasselt, (EQUADIFF 2003), eds. F. Dumortier et al., World Scientific, 2005, pp. 1128-1130. MR 2185197
R. Saxton, Blow-up at the Boundary of Solutions to Nonlinear Evolution Equations, ``Evolution Equations'', eds. G. Ferreyra, G. R. Goldstein and F. Neubrander, Lecture Notes in Pure and Applied Mathematics, 168 (1994), pp. 383-392. MR 1300444 (95i:35025)
M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rat. Mech. Anal., 76 (1981), pp. 97-133. MR 629700 (83c:73056)
Y. Wang, Finite time blow-up results for the damped wave equations with arbitrary energy in an inhomogeneous medium, Arxiv preprint math/0702190v1 (2007).