Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Escape to infinity in the presence of magnetic fields


Authors: A. Díaz-Cano and F. González-Gascón
Journal: Quart. Appl. Math. 70 (2012), 45-51
MSC (2010): Primary 78A35; Secondary 34A34
DOI: https://doi.org/10.1090/S0033-569X-2011-01248-4
Published electronically: August 26, 2011
MathSciNet review: 2920614
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Escape to infinity is proved to occur when a charge moves under the action of the magnetic field created by a finite number of planar closed wires.


References [Enhancements On Off] (What's this?)

  • 1. S. Ulam, Problems in modern mathematics, Science Editions, John Wiley & Sons, Inc., 1964. MR 0280310 (43:6031)
  • 2. J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol. 32 (1987), 11-22.
  • 3. F. González-Gascón, D. Peralta-Salas, Motion of a charge in the magnetic field created by wires: impossibility of reaching the wires, Phys. Lett. A. 333 (2004), 72-78. MR 2101963 (2005g:78009)
  • 4. F. González-Gascón, D. Peralta-Salas, Escape to infinity in a Newtonian potential, J. Phys. A 33 (2000), 5361-5368. MR 1783734 (2001j:70009)
  • 5. F. González-Gascón, D. Peralta-Salas, Escape to infinity under the action of a potential and a constant electromagnetic field, J. Phys. A 36 (2003), 6441-6455. MR 1987441 (2004f:70042)
  • 6. Y. Matsuno, Two-dimensional dynamical system associated with Abel's nonlinear differential equation, J. Math. Phys. 33 (1992), 412-421. MR 1141541 (92h:34025)
  • 7. A. Goriely, C. Hyde, Finite-time blow-up in dynamical systems, Phys. Lett. A 250 (1998), 311-318. MR 1666111 (2000e:34056)
  • 8. C. Marchioro, Solution of a three-body scattering problem in one dimension, J. Math. Phys. 11 (1970), 2193-2196.
  • 9. L.P. Fulcher, B.F. Davis, D.A. Rowe, An approximate method for classical scattering problems, Amer. J. Phys. 44 (1976), 956-959.
  • 10. L. Vaserstein, On systems of particles with finite-range and/or repulsive interactions, Commun. Math. Phys. 69 (1979), 31-56. MR 547525 (81b:58028)
  • 11. G. Galperin, Asymptotic behaviour of particle motion under repulsive forces, Commun. Math. Phys. 84 (1982), 547-556. MR 667760 (83m:70023)
  • 12. E. Gutkin, Integrable Hamiltonians with exponential potential, Phys. D 16 (1985), 398-404. MR 805712 (86k:58036)
  • 13. E. Gutkin, Asymptotics of trajectories for cone potentials, Phys. D 17 (1985), 235-242. MR 815287 (87c:58040)
  • 14. V.J. Menon, D.C. Agrawal, Solar escape revisited, Amer. J. Phys. 54 (1986), 752-753.
  • 15. E. Gutkin, Continuity of scattering data for particles on the line with directed repulsive interactions, J. Math. Phys. 28 (1987), 351-359. MR 872012 (88f:70011)
  • 16. A. Hubacher, Classical scattering theory in one dimension, Comm. Math. Phys. 123 (1989), 353-375. MR 1003425 (90f:58062)
  • 17. V. Moauro, P. Negrini, W.M. Oliva, Analytic integrability for a class of cone potential Hamiltonian systems, J. Differential Equations 90 (1991), 61-70. MR 1094449 (92b:58072)
  • 18. G. Fusco, W.M. Oliva, Integrability of a system of $ N$ electrons subjected to Coulombian interactions, J. Differential Equations 135 (1997), 16-40. MR 1434913 (98c:70012)
  • 19. C. Coleman, Boundedness and unboundedness in polynomial differential systems, Nonlinear Anal. 8 (1984), 1287-1294. MR 764913 (86b:34064)
  • 20. Z.F. Zhang, T.R. Ding, W.Z. Huang, Z.X. Dong, Qualitative theory of differential equations, Translations of Mathematical Monographs 101, American Mathematical Society, 1992. MR 1175631 (93h:34002)
  • 21. H. Röhrl, S. Walcher, Projections of polynomial vector fields and the Poincaré sphere, J. Differential Equations 139 (1997), 22-40. MR 1467351 (98j:34050)
  • 22. A. García, E. Pérez-Chavela, A. Susin, A generalization of the Poincaré compactification, Arch. Ration. Mech. Anal. 179 (2006), 285-302. MR 2209132 (2007f:37026)
  • 23. G. Arfken, Mathematical methods for physicists, Academic Press, 1966. MR 0205512 (34:5339)
  • 24. M.P. do Carmo, Differential Geometry of curves and surfaces, Prentice-Hall, 1976. MR 0394451 (52:15253)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 78A35, 34A34

Retrieve articles in all journals with MSC (2010): 78A35, 34A34


Additional Information

A. Díaz-Cano
Affiliation: IMI and Departamento de Álgebra, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
Email: adiaz@mat.ucm.es

F. González-Gascón
Affiliation: Departamento de Física Teórica II, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
Email: fggascon@fis.ucm.es

DOI: https://doi.org/10.1090/S0033-569X-2011-01248-4
Keywords: Escape to infinity, magnetic field, Lorentz equation
Received by editor(s): April 30, 2010
Published electronically: August 26, 2011
Additional Notes: The first author was partially supported by Spanish GAAR MTM2008-00272 and GAAR Grupos UCM 910444
Article copyright: © Copyright 2011 Brown University

American Mathematical Society