Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Chapman-Enskog $ \Rightarrow$ viscosity-capillarity

Author: Marshall Slemrod
Journal: Quart. Appl. Math. 70 (2012), 613-624
MSC (2010): Primary 35Q53; Secondary 35B20, 35L60, 76P05
DOI: https://doi.org/10.1090/S0033-569X-2012-01305-1
Published electronically: May 2, 2012
MathSciNet review: 2986137
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper reviews earlier work of A. Gorban and I. Karlin for the exact summation of the Chapman-Enskog expansion for the linearized Grad's 13-moment equations. One consequence of their exact summation, not noted in their papers, is that the exact summation yields a nonlocal version of Korteweg's theory of capillarity, which has proved to be useful as an admissibility criterion in gas dynamics.

References [Enhancements On Off] (What's this?)

  • 1. A.N. Gorban and I.V. Karlin, Structure and approximation of the Chapman-Enskog expansion for linearized Grad equations. Soviet Physics, JETP 73 (1991), 637-641. MR 1149364 (92m:82117)
  • 2. A.N. Gorban and I.V. Karlin, Short-wave limit of hydrodynamics: a soluble model. Physical Review Letters, 77 (1996), 282-285.
  • 3. I.V. Karlin and A.N. Gorban, Hydrodynamics from Grad's equations: What can we learn from exact solutions?. Ann. Physics (Leipzig) 11 (2002), 783-833. MR 1957348 (2004e:82050)
  • 4. D.J. Korteweg, Sur la forme que prennent les équations des mouvements des fluides si l'on tient couple des forces capillaires par des variations de densité. Arch. Neerl. Sci. Exactes Nat. Ser. II 6 (1901), 1-24.
  • 5. C.A. Truesdell and W. Noll, The Non-linear Theories of Mechanics. S. Flugge, Editor, Encylopedia of Physics, Vol. III (2nd edition), Springer-Verlag, Berlin/New York (1965).
  • 6. M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Archive for Rational Mechanics and Analysis 81 (1983), 301-315. MR 683192 (84a:76030)
  • 7. M. Slemrod, Dynamic phase transitions in a van der Waals fluid. Journal of Differential Equations 52 (1984), 1-23. MR 737959 (85e:76040)
  • 8. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Third Edition, Springer (2010). MR 2574377 (2011i:35150)
  • 9. P. Rosenau, Dynamics of dense lattices. Physical Review B 36 (1987), 5868-5876. MR 914756 (88m:82046)
  • 10. P. Rosenau, Extension of Landau-Ginzburg free energy functionals to high-gradient domains. Physical Review A 39 (1989), 6614-6617.
  • 11. P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Physical Review A 40 (1989), 7193-7196. MR 1031939 (91b:82047)
  • 12. C. Cercignani, The Boltzmann Equation and Fluid Dynamics. Handbook of Mathematical Fluid Dynamics, Vol. 1, North Holland, Amsterdam (2002), 1-69. MR 1942464 (2003k:76119)
  • 13. S. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations. J. Statistical Physics 124 (2006), 371-399. MR 2264613 (2007i:82066)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35Q53, 35B20, 35L60, 76P05

Retrieve articles in all journals with MSC (2010): 35Q53, 35B20, 35L60, 76P05

Additional Information

Marshall Slemrod
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: slemrod@math.wisc.edu

DOI: https://doi.org/10.1090/S0033-569X-2012-01305-1
Received by editor(s): December 13, 2011
Published electronically: May 2, 2012
Dedicated: Dedicated to Constantine M. Dafermos on the Occasion of his 70$^{th}$ Birthday
Article copyright: © Copyright 2012 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society