Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On global minimizers for a variational problem with long-range interactions


Author: Rustum Choksi
Journal: Quart. Appl. Math. 70 (2012), 517-537
MSC (2010): Primary 49S05; Secondary 49M30, 35K30, 35K55, 74N15
DOI: https://doi.org/10.1090/S0033-569X-2012-01316-9
Published electronically: May 24, 2012
MathSciNet review: 2986133
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Energy-driven pattern formation induced by competing short and long-range interactions is common in many physical systems. In these proceedings we report on certain rigorous asymptotic results concerning global minimizers of a nonlocal perturbation to the well-known Ginzburg-Landau/Cahn-Hilliard free energy. We also discuss two hybrid numerical methods for accessing the ground states of these functionals.


References [Enhancements On Off] (What's this?)

  • 1. Acerbi. E., Fusco, N. and Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem, preprint (2011).
  • 2. Alberti, G.: Variational Models for Phase Transitions, an Approach via $ \Gamma $-convergence. Calculus of Variations and Partial Differential Equations (Pisa, 1996), 95-114, Springer, Berlin, 2000. MR 1757697
  • 3. Alberti, G., Choksi, R., and Otto, F.: Uniform Energy Distribution for Minimizers of an Isoperimetric Problem With Long-range Interactions. J. Amer. Math. Soc., 22-2, 569-605 (2009). MR 2476783 (2009m:49073)
  • 4. Anzellotti, G. and Baldo, S: Asymptotic Development by $ \Gamma $-convergence. Appl. Math. Optim. 27, 105-123 (1993). MR 1202527 (94b:49051)
  • 5. Bates, F.S. and Fredrickson, G.H.: Block Copolymers - Designer Soft Materials. Physics Today, 52-2, 32-38 (1999).
  • 6. Cahn, J.W. and Hilliard, J.E.: Free Energy of a Nonuniform System I. Interfacial Free Energy. J. Chem. Phys., 28(2), 258-267 (1958).
  • 7. Chen, X. and Oshita, Y.: Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction. SIAM J. Math. Anal. 37 no. 4, 1299-1332 (2005). MR 2192296 (2006k:49027)
  • 8. Chen, X. and Oshita, Y.: An Application of the Modular Function in Nonlocal Variational Problems. Arch. Rat. Mech. Anal. 186-1, 109-132 (2007). MR 2338353 (2009c:82060)
  • 9. Choksi, R: Scaling Laws in Microphase Separation of Diblock Copolymers. J. Nonlinear Sci. 11, 223-236 (2001). MR 1852942 (2003h:82091)
  • 10. Choksi, R., Maras, M., and Williams, J.F.: 2D Phase Diagram for Minimizers of a Cahn-Hilliard Functional with Long-range Interactions, SIAM J. Applied Dynamical Systems, 10-4, 1344-1362 (2011).
  • 11. Choksi, R. and Peletier, M.A.: Small Volume Fraction Limit of the Diblock Copolymer Problem: I. Sharp Interface Functional. SIAM J. Math. Anal., 42-3, 1334-1370 (2010). MR 2653253 (2011j:49092)
  • 12. Choksi, R. and Peletier, M.A.: Small Volume Fraction Limit of the Diblock Copolymer Problem: II. Diffuse Interface Functional. SIAM J. Math Anal., 43-2, 739-763 (2011). MR 2784874
  • 13. Choksi, R., Peletier, M.A., and Williams, J.F.: On the Phase Diagram for Microphase Separation of Diblock Copolymers: an Approach via a Nonlocal Cahn-Hilliard Functional. SIAM J. Appl. Math. 69-6, 1712-1738 (2009). MR 2496714 (2010f:74050)
  • 14. Choksi, R. and Ren, X.: On a Derivation of a Density Functional Theory for Microphase Separation of Diblock Copolymers. Journal of Statistical Physics, 113, 151-176 (2003). MR 2012976 (2004k:82065)
  • 15. Choksi, R. and Sternberg, P.: On the First and Second Variations of a Nonlocal Isoperimetric Problem. J. Reine Angewandte Math. 611, 75-108 (2007). MR 2360604 (2008j:49062)
  • 16. Cicalese, M. and Spadaro, E.N.: Droplet minimizers for a isoperimetric problem with long-range interactions, preprint.
  • 17. Cochran, E.W., Garcia-Cervera, C.J., and Fredrickson, G.H. Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation. Macromolecules 39(7), 2449-2451 (2006).
  • 18. Cross, M.C. and Hohenberg, P.C.: Pattern Formation Outside of Equilibrium. Reviews of Modern Physics 65:3, 851-1111 (1993).
  • 19. Eyre, D.: An Unconditionally Stable One-step Scheme for Gradient Systems. Unpublished paper, 1998 available at www.math.utah.edu/~eyre/research/methods/stable.ps
  • 20. Fife, P.: Models for Phase Separation and Their Mathematics. Electronic J. Diff. Equations, Vol. 2000 No. 48, 1-26 (2000). MR 1772733 (2001k:35147)
  • 21. Fredrickson, G.H.: The Equilibrium Theory of Inhomogeneous Polymers. Oxford Science Publications, Clarendon Press, 2006. MR 2261726 (2008i:82153)
  • 22. Glasner, K: Spatially localized structures in diblock copolymer mixtures. SIAM J. Appl. Math. 70-6, 2045-2074 (2010). MR 2630020 (2011e:82114)
  • 23. Giuliani, A., Lebowitz, J. L., and Lieb, E. H.: Striped phases in two dimensional dipole systems. Phys. Rev. B 76, 184426 (2007)
  • 24. Giuliani, A., Lebowitz, J. L., and Lieb, E. H.: Periodic minimizers in 1D local mean field theory. Comm. Math. Phys. 286 no. 1, 163-177 (2009). MR 2470928 (2009k:82036)
  • 25. Goldman, D., Muratov, C.B., and Serfaty, S: The Gamma-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, preprint (2011).
  • 26. Goldman, D., Muratov, C.B., and Serfaty, S: The Gamma-limit of the two-dimensional Ohta-Kawasaki energy. II. Droplet arrangement via the renormalized energy, preprint (2012).
  • 27. van Gennip, Y. and Peletier, M.A.: Copolymer-homopolymer Blends: Global Energy Minimisation and Global Energy Bounds, Calc. Var. 33, 75-111 (2008). MR 2413102 (2009i:49008)
  • 28. Gomez, H. and Hughes, T.J.R.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comp. Phys. 230, 5310-5327 (2011). MR 2799512
  • 29. Hamley, I.W.: The Physics of Block Copolymers. Oxford Science Publications, 1998.
  • 30. Jerrard, R. L. and Sternberg, P.: Critical points via $ \Gamma $-convergence: general theory and applications. J. Eur. Math. Soc. (JEMS) 11 no. 4, 705-753 (2009). MR 2538502 (2010g:49017)
  • 31. Khandpur, A. K., Forster, S., Bates, F.S., Hamley, I.W. et al: Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules 28, 8796-8806 (1995).
  • 32. Kohn, R.V.: Energy-driven Pattern Formation. Plenary Lecture and Proceedings of the International Congress of Mathematicians, Zürich, Vol. I, 359-383, Eur. Math. Soc., (2007). MR 2334197 (2008k:49049)
  • 33. Kohn, R.V. and Sternberg, P.: Local Minimizers and Singular Perturbations. Proc. Roy. Soc. of Edinburgh Sect. A 111, 69-84 (1989). MR 985990 (90c:49021)
  • 34. Knuepfer, H. and Muratov, C.B.: On an isoperimetric problem with a competing non-local term. I. The planar case. Submitted (2011).
  • 35. Kassam, A. and Trefethen, L. N.: Fourth-order Time-stepping for Stiff PDEs. SIAM J. Sci. Comput. 26, no. 4, 1214-1233 (2005). MR 2143482 (2006g:65159)
  • 36. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53, 603-641 (1981). MR 629207 (83a:81080a)
  • 37. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl. Math., 57, 93-105 (1977). MR 0471785 (57:11508)
  • 38. Lieb, E.H. and Loss, M.: Analysis. American Mathematical Society Graduate Studies in Mathematics Vol. 14. second edition (2001). MR 1817225 (2001i:00001)
  • 39. Leibler, L: Theory of Microphase Separation in Block Copolymers, Macromolecules 13, 1602-1617 (1980).
  • 40. Lu, J. and Otto, F.: Nonexistence of a Minimizer for the Thomas-Fermi-Dirac-von Weizsäcker model, preprint (2011).
  • 41. Matsen, M. W. and Schick, M.: Stable and Unstable Phases of a Diblock Copolymer Melt. Phys. Rev. Lett. 72, 2660-2663 (1994). Calc. Var. 1 169-204 (1993).
  • 42. Modica, L. and Mortola, S.: Un Esempio di $ \Gamma -$Convergenza. Boll. Un. Mat. Ital. (5) 14-B 285-299 (1977). MR 0445362 (56:3704)
  • 43. Müller, S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var., 1, 169-204 (1993). MR 1261722 (95k:49030)
  • 44. Muratov, C.B.: Theory of Domain Patterns in Systems with Long-Range Interactions of Coulomb Type. Phys. Rev. E. 66, 066108 (2002). MR 1953930 (2003k:82028)
  • 45. Muratov, C.B.: Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions, Commun. Math. Phys. 299, 45-87 (2010). MR 2672798 (2011j:82092)
  • 46. Muratov, C.B. and Osipov, V.V.: General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems. Phys. Rev. E 53, 3101-3116 (1996). MR 1388221 (96m:35164)
  • 47. Nishiura, Y. and Ohnishi, I.: Some Mathematical Aspects of the Micro-phase Separation in Diblock Copolymers. Physica D 84, 31-39 (1995). MR 1334695 (96g:35196)
  • 48. Ohta, T. and Kawasaki, K.: Equilibrium Morphology of Block Copolymer Melts. Macromolecules 19, 2621-2632 (1986).
  • 49. Peletier, M.A. and Veneroni, M.: Stripe Patterns in a Model for Block Copolymers. Mathematical Models and Methods in Applied Sciences, 20, 843-907 (2010). MR 2659741 (2011k:49024)
  • 50. Peletier, L.A. and Troy, W.C.: Spatial Patterns: Higher Order Models in Physics and Mechanics. Progress in Nonlinear Differential Equations and their Applications, 45. Birkhäuser, 2001. MR 1839555 (2002f:34106)
  • 51. Poincaré, H.: Sur une théorème de M. Liapunoff rélatif a l'équilibre d'une masse fluide. Comptes Rendus de L'Academie des Sciences, 104, 622-625 (1887).
  • 52. Ren, X., and Wei, J.: On the Multiplicity of Two Nonlocal Variational Problems, SIAM J. Math. Anal. 31-4, 909-924 (2000). MR 1752422 (2001a:74035)
  • 53. Ren, X., and Wei, J.: On Energy Minimizers of the Diblock Copolymer Problem, Interfaces and Free Boundaries 5, 193-238 (2003). MR 1980472 (2004i:82077)
  • 54. Ren, X. and Wei, J.: Stability of Spot and Ring Solutions of the Diblock Copolymer Equation. J. Math. Phys. 45-11, 4106-4133 (2004). MR 2098120 (2005h:82125)
  • 55. Ren, X. and Wei, J.: Wriggled Lamellar Solutions and their Stability in the Diblock Copolymer Problem. SIAM J. Math. Anal. 37-2, 455-489 (2005). MR 2176111 (2006m:35112)
  • 56. Ren, X. and Wei, J.: Droplet solutions in the diblock copolymer problem with skewed monomer composition. Calc. Var. Partial Differential Equations. 25-3, 333-359 (2006). MR 2201676 (2007b:82107)
  • 57. Ren, X. and Wei, J.: Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation. SIAM J. Appl. Math. 66-3, 1080-1099 (2006). MR 2216732 (2007a:34088)
  • 58. Ren, X. and Wei, J.: Single droplet pattern in the cylindrical phase of diblock copolymer morphology, Journal of Nonlinear Science, Vol. 17, No. 5, 471-503 (2007). MR 2361417 (2008i:82154)
  • 59. Ren, X. and Wei, J.: Spherical Solutions to a Nonlocal Free Boundary Problem From Diblock Copolymer Morphology. SIAM J. Math. Anal. 39-5, 1497-1535 (2008). MR 2377287 (2009d:82168)
  • 60. Ren, X. and Wei, J.: A toroidal tube solution to a problem involving mean curvature and Newtonian potential, Interfaces and Free Boundaries, Vol. 13, No. 1, 127-154 (2011), MR 2793855
  • 61. Ruuth, S.J. and Merriman, B.: A Simple Embedding Method for Solving Partial Differential Equations on Surfaces, J. Comput. Phys., 227(3): 1943-1961, 2008. MR 2450979 (2009h:35239)
  • 62. Sandier, E. and Serfaty, S.: $ \Gamma $-convergence of Gradient Flows with Applications to Ginzburg-Landau. Comm. Pure Appl. Math. 57-12, 1627-1672 (2004). MR 2082242 (2005f:49002)
  • 63. Seul, M. and Andelman, D.: Domain Shapes and Patterns: The Phenomenology of Modulated Phases. Science 267 476 (1995).
  • 64. Shahriari, B., Ruuth, S., and Choksi, R: Self-Assembly on General Surfaces via the Closest Point Method, in preparation.
  • 65. Spadaro, E.N.: Uniform Energy and Density Distribution: Diblock Copolymer Functional. Interfaces Free Bound. 11, 447-474 (2009). MR 2546607 (2011b:82097)
  • 66. Sternberg, P. and Topaloglu, I.: On the Global Minimizers of a Nonlocal Isoperimetric Problem in Two Dimensions. Interfaces and Free Boundaries, 13, no. 1, 155-169 (2011). MR 2793856
  • 67. Teramoto, T. and Nishiura, Y.: Double Gyroid Morphology in a Gradient System with Nonlocal Effects. Journal of the Physical Society of Japan. Vol. 71-7, 1611-1614 (2002).
  • 68. Teramoto, T. and Nishiura, Y.: Morphological Characterization of the Diblock Copolymer Problem with Topological Computation. Japan Journal of Industrial and Applied Mathematics 27, 175-190 (2010). MR 2720552
  • 69. Theil, F.: A Proof of Crystallization in Two Dimensions. Comm. Math. Phys. 262-1, 209-236 (2006). MR 2200888 (2007f:82018)
  • 70. Yip, N.K.: Structure of Stable Solutions of a One-dimensional Variational Problem. ESAIM: Control, Optimisation and Calculus of Variations, 12-4, 721-751 (2006). MR 2266815 (2007g:49027)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 49S05, 49M30, 35K30, 35K55, 74N15

Retrieve articles in all journals with MSC (2010): 49S05, 49M30, 35K30, 35K55, 74N15


Additional Information

Rustum Choksi
Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Canada
Email: rchoksi@math.mcgill.ca

DOI: https://doi.org/10.1090/S0033-569X-2012-01316-9
Keywords: Global minimizers, long-range interactions, diblock copolymers
Received by editor(s): January 15, 2012
Published electronically: May 24, 2012
Dedicated: Dedicated to Constantine M. Dafermos on the occasion of his 70th birthday
Article copyright: © Copyright 2012 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society