Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Long time behavior of the Fokker-Planck-Boltzmann equation with soft potential


Authors: Ming-Ying Zhong and Hai-Liang Li
Journal: Quart. Appl. Math. 70 (2012), 721-742
MSC (2010): Primary 82C40, 35Q20, 35Q84
DOI: https://doi.org/10.1090/S0033-569X-2012-01269-3
Published electronically: June 21, 2012
MathSciNet review: 3052087
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, we consider the initial value problem for the Fokker-Planck-Boltzmann equation with soft potential. For initial data near an absolute Maxwellian, we show the global existence and uniqueness of the classical solution and establish its long time decay rate.


References [Enhancements On Off] (What's this?)

  • 1. Arnold, A., Markowich, P.A., Toscani, G., Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm Partial Differential Equations 26 (2001), 43-100. MR 1842428 (2002d:35097)
  • 2. Bisi, M., Carrillo, J.A., Toscani, G., Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria. J. Stat. Phys. 118 (2005), 301-331. MR 2122557 (2006d:82061)
  • 3. Carrillo, J.A., Toscani, G., Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations. Math. Methods Appl. Sciences 21 (1998), 1269-1286. MR 1639292 (99h:82055)
  • 4. Cerergnani, C., The Boltzmann equation and Its Application. Springer-Verlag, 1988. MR 1313028 (95i:82082)
  • 5. Caflisch, Russel E., The Boltzmann equation with a soft potential, I. Linear, spatially-homogeneous. Comm. Math. Phys. 74 (1980), 71-95. MR 575897 (82j:82040a)
  • 6. Caflisch, Russel E., The Boltzmann equation with a soft potential, II. Nonlinear, spatially-periodic. Comm. Math. Phys. 74 (1980), 97-107. MR 576265 (82j:82040b)
  • 7. Desvillettes, L., Villani, C., On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems. Part I: The linear Fokker-Planck equation. Comm. Pure Appl. Math. 54 (2001), 1-42. MR 1787105 (2001h:82079)
  • 8. Desvillettes, L., Villani, C., On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. Math. 159 (2005), 245-316. MR 2116276 (2005j:82070)
  • 9. DiPerna, R.J., Lion, P.L., On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130 (1989), 321-366. MR 1014927 (90k:82045)
  • 10. DiPerna, R.J., Lion, P.L., On the Fokker-Planck-Boltzmann equation. Comm. Math. Phys. 120 (1988), 1-23. MR 972541 (90b:35203)
  • 11. Glassey, R.T., The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia, PA, 1996. MR 1379589 (97i:82070)
  • 12. Grad, H., Asymptotic theory of the Boltzmann equation. II. Rarefied Gas Dynamics. Ed. J.A. Laurmann, Vol. I, 26-59, Academic Press, New York, 1963. MR 0156656 (27:6577)
  • 13. Guo, Y., The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), 1081-1094. MR 2095473 (2005g:35028)
  • 14. Guo, Y., The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure. Appl. Math. 55(9) (2002), 1104-1135. MR 1908664 (2003b:82050)
  • 15. Guo, Y., The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153(3) (2003), 593-630. MR 2000470 (2004m:82123)
  • 16. Guo, Y., Classical Solutions to the Boltzmann Equation for Molecules with an Angular Cutoff, Arch. Ration. Mech. Anal. 169 (2003), 305-353. MR 2013332 (2004i:82054)
  • 17. Hamdache, K., Estimations uniformes des solutions de l'équation de Boltzmann par les méthodes de viscosité artificielle et de diffusion de Fokker Planck. C. R. Math. Acad. Sci. Paris 302 (1986), 187-190. MR 832069 (88d:82060)
  • 18. Hamdache, K., Théorémes de compacité par compensation et applications en théorie cintique des gaz [Compensated compactness theorems and applications to the kinetic theory of gases]. C. R. Math. Acad. Sci. Paris 302 (1986), 151-154. MR 832059 (88d:82059)
  • 19. Hsiao, L., Yu, H.J., On the Cauchy Problem of the Boltzmann and Landau Equation with soft potentials, Quarterly of Applied Math. Volume LXV, Number 2 (2007), 281-315. MR 2330559 (2008i:35235)
  • 20. Kawashima, S., The Boltzmann equation and thirteen moments. Japan J. Appl. Math. 7 (1990), no. 2, 301-320. MR 1057534 (91i:82020)
  • 21. Li, H.L., Matsumura, A., Behaviour of the Fokker-Planck-Boltzmann equation near a Maxwellian, Arch. Ration. Mech. Anal. 189 (2008), 1-44. MR 2403598 (2009d:82117)
  • 22. Li, H.L, Diffusive Property of the Fokker-Planck-Boltzmann Equation, Reprint from Bulletin of the Institute of Mathematics, Academia Sinica (New Series), Volume 2, No. 4, pp. 921-933, December 2007. MR 2363984 (2009b:82087)
  • 23. Liu, T.P., Yang, T., Yu, S.H., Energy method for Boltzmann equation. Physica D 188 (2004), 178-192. MR 2043729 (2005a:82091)
  • 24. Liu, T.P., Yu, S.H., Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Comm. Math. Phys. 246 (2004), No. 1, 133-179. MR 2044894 (2005f:82101)
  • 25. Liu, T.P., Yang, T., Yu, S.H., Zhao, H.J., Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation. Arch. Ration. Mech. Anal. 181 (2006), 333-371. MR 2221210 (2007b:76106)
  • 26. Loyalka, S.K., Rarefied gas dynamic problems in enviromental sciences. Proceedings 15th International Symposum on Rarefied Gas Dynamics, held in Grado, June 16-20 (Eds. V. Boffi and C. Cercignani), Teubner, Stuttgart, 1986.
  • 27. Toscani, G., Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation. Quart. Appl. Math. 57 (1999), no. 3, 521-541. MR 1704435 (2000m:82042)
  • 28. Strain, R.M., Guo, Y., Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287-339. MR 2366140 (2008m:82008)
  • 29. Strain, R.M., Optimal time decay of the non-cut-off Boltzmann equation in the whole space, arXiv:1011.5561v2
  • 30. Ukai, S., Asano, K., On the Cauchy problem of the Boltzmann equation with a soft potential, Publ. Res. Inst. Math. Sci. 18 (1982), 477-519. MR 677262 (84h:82048)
  • 31. Yang, T., Yu, H., Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations 248 (2010), 1518-1560. MR 2593052
  • 32. Zhong, M.Y., Li, H.L., Long time behavior of the Fokker-Planck-Boltzmann equation, preprint, 2009.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 82C40, 35Q20, 35Q84

Retrieve articles in all journals with MSC (2010): 82C40, 35Q20, 35Q84


Additional Information

Ming-Ying Zhong
Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing, 100804 People’s Republic of China
Email: zhongmingying@sina.com

Hai-Liang Li
Affiliation: Department of Mathematics, Capital Normal University, Beijing, 100037 People’s Republic of China
Email: hailiang.li.math@gmail.com

DOI: https://doi.org/10.1090/S0033-569X-2012-01269-3
Received by editor(s): November 27, 2010
Published electronically: June 21, 2012
Additional Notes: The research for this paper was partially supported by the NNSFC Nos. 10871134, 10910257 and 11011130029, the Huo Ying Dong Fund No. 111033, and the AHRDIHL Project of Beijing Municipality No. PHR201006107
Article copyright: © Copyright 2012 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society